
175

A Type-and-Effect System for Object Initialization

FENGYUN LIU, EPFL, Switzerland
ONDŘEJ LHOTÁK, University of Waterloo, Canada

AGGELOS BIBOUDIS, EPFL, Switzerland
PAOLO G. GIARRUSSO, Delft University of Technology, Netherlands

MARTIN ODERSKY, EPFL, Switzerland

Every newly created object goes through several initialization states: starting from a state where all fields are

uninitialized until all of them are assigned. Any operation on the object during its initialization process, which

usually happens in the constructor via this, has to observe the initialization states of the object for correctness,

i.e. only initialized fields may be used. Checking safe usage of this statically, without manual annotation of

initialization states in the source code, is a challenge, due to aliasing and virtual method calls on this.
Mainstream languages either do not check initialization errors, such as Java, C++, Scala, or they defend

against them by not supporting useful initialization patterns, such as Swift. In parallel, past research has

shown that safe initialization can be achieved for varying degrees of expressiveness but by sacrificing syntactic

simplicity.

We approach the problem by upholding local reasoning about initialization which avoids whole-program

analysis, and we achieve typestate polymorphism via subtyping. On this basis, we put forward a novel type-

and-effect system that can effectively ensure initialization safety while allowing flexible initialization patterns.

We implement an initialization checker in the Scala 3 compiler and evaluate on several real-world projects.

CCS Concepts: • Software and its engineering→ Object oriented languages; Classes and objects.

Additional Key Words and Phrases: Object initialization, Type-and-effect system

ACM Reference Format:
Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso, and Martin Odersky. 2020. A Type-and-

Effect System for Object Initialization. Proc. ACM Program. Lang. 4, OOPSLA, Article 175 (November 2020),

28 pages. https://doi.org/10.1145/3428243

1 INTRODUCTION
Object-oriented programming is unsafe if objects cannot be initialized safely. The following code

shows a simple initialization problem
1
:

1 class Hello {

2 val message = "hello, " + name

3 val name = "Alice"

4 }

5 println(new Hello().message))

1
In the absence of special notes, the code examples are in Scala.

Authors’ addresses: Fengyun Liu, EPFL, Switzerland; Ondřej Lhoták, University of Waterloo, Canada; Aggelos Biboudis,

EPFL, Switzerland; Paolo G. Giarrusso, Delft University of Technology, Netherlands; Martin Odersky, EPFL, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART175

https://doi.org/10.1145/3428243

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

https://doi.org/10.1145/3428243
https://doi.org/10.1145/3428243

175:2 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

The code above when run will print “hello, null” instead of “hello, Alice”, as the field name

is not initialized, thus holds the value null, when it is used in the second line.

The problem of safe initialization comes into existence since the introduction of object-oriented

programming, and it is still a headache for programmers and language designers. Joe Duffy, in his

popular blog post on partially constructed objects [Duffy 2010], wrote:

Not only are partially-constructed objects a source of consternation for everyday

programmers, they are also a challenge for language designers wanting to provide guar-

antees around invariants, immutability and concurrency-safety, and non-nullability.

1.1 Theoretical Challenges
Checking safe initialization of objects statically is becoming a challenge as the code in constructors

is getting more complex. From past research [Fähndrich and Leino 2003; Fähndrich and Xia 2007;

Gil and Shragai 2009; Qi and Myers 2009; Servetto et al. 2013; Summers and Müller 2011; Zibin et al.

2012], two initialization requirements are identified and commonly recognized.

Requirement 1: usage of “this” inside the constructor. The usage of already initialized fields
in the constructor is safe and supported by almost all industrial languages. Based on an extensive

study of over sixty thousand classes, Gil and Shragai [2009] report that over 8% of constructors

include method calls on this. Method calls on this can be used to compute initial values for field

initialization or serve as a private channel between the superclass and subclass.

Requirement 2: creation of cyclic data structures. Cyclic data structures are common in

programming. For example, the following code shows the initialization of two mutually dependent

objects:

1 class Parent { val child: Child = new Child(this) }

2 class Child(parent: Parent)

The objective is to allow cyclic data structures while preventing accidental premature usage of

aliased objects. Accessing fields or calling methods on those aliased objects under initialization is

an orthogonal concern, the importance of which is open to debate.

There are three theoretical challenges in addressing the requirements above.

Challenge 1: virtual method calls.While direct usage of already initialized fields via this is

relatively easy to handle, indirect usage via virtual method calls poses a challenge. Such methods

could be potentially overridden in a subclass, which makes it difficult to statically check whether it

is safe to call such a method. This can be demonstrated by the following example:

1 abstract class AbstractFile {

2 def name: String

3 val extension: String = name.substring(4)

4 }

5 class RemoteFile(url:String) extends AbstractFile {

6 val localFile: String = url.hashCode // error

7 def name: String = localFile

8 }

According to the semantics of Scala (Java is the same), fields of a superclass are initialized before

fields of a subclass, so initialization of the field extension proceeds before localFile. The field

extension in the class AbstractFile is initialized by calling the abstract method name. The latter,

implemented in the child class RemoteFile, accesses the uninitialized field localFile.

Challenge 2: aliasing. It is well-known that aliasing complicates program reasoning and it is

challenging to develop practical type systems to support reasoning about aliasing [Clarke et al.

2013; Hogg et al. 1992]. It is also the case for safe initialization: if a field aliases an object under

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:3

initialization, we may not assume the field is fully initialized. This can be seen from the following

example:

1 class Knot {

2 val self = this

3 val n: Int = self.n // error

4 }

In the code above, the field self is an alias of this, thus we may not use it as a fully initialized

value. Aliasing may also happen indirectly through method calls, as the following code shows:

1 class Foo {

2 def f() = this

3 val n: Int = f().n // error

4 }

Challenge 3: typestate polymorphism. Every newly created object goes through several

typestates [Strom and Yemini 1986]: starting from a state where all fields are uninitialized until all

of them are assigned. If a method does not access any fields on this , then it should be able to be

called on any typestate of this . For example, in the following class C, we should be able to call the

method g regardless of the initialization state of this:

1 class C {

2 // ...

3 def g(): Int = 100

4 }

The challenge is how to support this feature succinctly without syntactic overhead.

1.2 Existing Work
1.2.1 Industrial Languages. Existing programming languages sit at two extremes. On one extreme,

we find languages such as Java, C++, Scala, where programmers may use this as if it is fully

initialized, devoid of any safety guarantee. On the other extreme, we find languages such as Swift,

which ensures safe initialization, but is overly restrictive. The initialization of cyclic data structures

is not supported, calling methods on this is forbidden, even the usage of already initialized fields

is limited. For example, in the following Swift code, while the usage of x to initialize y is allowed,

the usage of y to initialize f is illegal, which is a surprise:

1 class Position {

2 var x, y: Int

3 var f: () -> Int

4 init() {

5 x = 4

6 y = x * x // OK

7 f = { () -> Int in self.y } // error

8 }

9 }

1.2.2 Masked Types. Qi and Myers [2009] propose an expressive, flow-sensitive type-and-effect

system [Lucassen and Gifford 1988] for safe initialization based on the concept of masked types.
A masked type T \f denotes objects of the type T , where the masked field f cannot be accessed.

Each method has an effect signature of the formM1 ; M2, which means that the method can only

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:4 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

be called if this conforms to the masksM1, and the resulting masks for this after the call areM2.

However, there are several obstacles to make the system practical.

First, the system incurs cognitive load and syntactic overhead. Many concepts are introduced in

the system, such as subclass masks, conditional masks, abstract masks, each with non-trivial syntax.

The paper mentions that inference can help remove the syntactic burden. However, it leaves open

the formal development of such an inference system.

Second, the system, while expressive, is insufficient for simple and common use cases due to the

missing support for typestate polymorphism. This can be seen from the following example, where

we want the method g to be called for any initialization state of this:

1 class C { def g(): Int = 100 /* effect of g: ∀M .M ; M */ }

As the method g can be called for this with any masks, we would like to give it the (imaginary)

polymorphic effect signature ∀M .M ; M , which is not supported. Even if an extension of the

system supports polymorphic effect signatures, it will only incur more syntactic overhead.

1.2.3 The Freedom Model. Summers and Müller [2011] propose a light-weight, flow-insensitive

type system for safe initialization, which we call the freedom model.
The freedom model classifies objects into two groups: free, that is under initialization, and com-

mitted, that is transitively initialized. Field accesses on free objects may get null, while committed

objects can be used safely. To support typestate polymorphism, it introduces the typestate unclassi-
fied, which means either free or committed. In the system, typestate polymorphism becomes just

subtyping polymorphism.

The freedom model supports the creation of cyclic data structures with light-weight syntax.

However, the formal system does not address the usage of already initialized fields in the constructor.

When an object is free, accessing its field will return a value of the type unclassified C?, which

means the value could be null, free or committed. In the implementation, they introduce committed-
only fields which can be assumed to be committed with the help of a dataflow analysis. However,

the paper leaves open the formal treatment of the dataflow analysis. Our work will address the

problem.

Moreover, the abstraction free is too coarse for some use cases. This is demonstrated by the

following example:

1 class Parent {

2 var child = new Child(this)

3 var tag: Int = child.tag // error in freedom model

4 }

5 class Child(parent: Parent @free) {

6 var tag: Int = 10

7 }

According to the freedom model, the expression child in line 3 will be typed as free, thus the
type system cannot tell whether the field child.tag is initialized or not. But conceptually we know

that all fields of child are initialized by the constructor of the class Child. In this work we propose

a new abstraction to improve expressiveness in such cases.

1.3 Contributions
Our work makes contributions in four areas:

1. Better understanding of local reasoning about initialization. Local reasoning about ini-
tialization is a key requirement for simple and fast initialization systems. However, while prior

work [Summers and Müller 2011] takes advantage of local reasoning about initialization to design

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:5

simple initialization systems, the concept of local reasoning about initialization is neither mentioned

nor defined precisely. Identifying local reasoning about initialization as a concept with a better

understanding enables it to be applied in the design of future initialization systems.

2. A more expressive type-based model. We propose a more expressive type-based model for

initialization based on the abstractions cold,warm and hot. The introduction of the abstractionwarm
improves the expressiveness of the freedom model [Summers and Müller 2011], which classifies

objects as either free (i.e. cold) or committed (i.e. hot).

3. A novel type-and-effect inference system. We propose a type-and-effect inference system

for a practical fragment of the type-basedmodel. Existing work usually depends on some unspecified

inference or analysis to cut down syntactic overhead [Qi and Myers 2009; Summers and Müller

2011; Zibin et al. 2012]. We are the first to present a formal inference system on the problem of

safe initialization. Meanwhile, to our knowledge, we are the first to demonstrate the technique of

controlling aliasing in a type-and-effect system.

4. Implementation in Scala 3. We implement an initialization system in the Scala 3 compiler

and evaluate it on several real-world projects. The system is capable of handling complex language

features, such as inner classes, traits and functions.

2 LOCAL REASONING ABOUT INITIALIZATION
An important insight in the work of Summers and Müller [2011] is that if a constructor is called
with only transitively initialized arguments, the resulting object is transitively initialized. We give

this insight a name, local reasoning about initialization; it enables reasoning about initialization

without the global analysis of a program, which is the key for simple and fast initialization systems.

The insight can be generalized to the following:

In an initialized environment, the result of an expression can only be initialized.
But how can we justify the insight? While a justification can be found in the soundness proof

of the freedom model, it is obscured in a monolithic proof structure (see Lemma 1 of Summers

and Müller [2011]). We provide a modular understanding of local reasoning about initialization by

identifying three semantic properties, which we call weak monotonicity, stackability and scopability.
Identifying local reasoning about initialization as a concept with a better understanding enables it

to be applied in the design of future initialization systems. The properties can be explained roughly

as follows:

• weak monotonicity: initialized fields continue to be initialized.

• stackability: all fields of a class should be initialized at the end of the class constructor.

• scopability: objects under initialization can only be accessed via static scoping.

To study the properties more formally, we first introduce a small language.

2.1 A Small Language
Our language resembles a subset of Scala having only top-level classes, mutable fields and methods.

P ∈ Program ::= (C,D)

C ∈ Class ::= class C(f̂ :T) { F M }

F ∈ Field ::= var f :T = e
e ∈ Exp ::= x | this | e . f | e .m(e) | new C(e) | e . f = e; e

M ∈ Method ::= def m(x :T) : T = e
S,T ,U ∈ Type ::= C

A program P is composed of a list of class definitions and an entry class. The entry class must

have the form class D { def main() : T = e }. The program runs by executing e .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:6 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

A class definition contains class parameters (f̂ :T), field definitions (var f :T = e) and method

definitions (def m(x :T) : T = e). Class parameters are also fields of the class. All class fields

are mutable. As a convention, we use f to range over all fields, and f̂ to only range over class

parameters.

An expression (e) can be a variable (x), a self reference (this), a field access (e . f), a method call

(e .m(e)), a class instantiation (new D(e)), or a block expression (e . f = e; e). The block expression

is used to avoid introducing the syntactic category of statements in the presence of assignments,

which simplifies the presentation and meta-theory.

A method definition is standard. The body of a method is an expression, which could be a block

expression to express a sequence of computations.

The following constructs are used in defining the semantics:

Ξ ∈ ClassTable = ClassName⇀ Class

σ ∈ Store = Loc⇀ Obj

ρ ∈ Env = Variable⇀ Value

o ∈ Obj = ClassName × (FieldName⇀ Value)

l,ψ ∈ Value = Loc

We use ψ to denote the value of this , σ to denote the heap, and ρ to denote the local variable

environment of the current stack frame.

The big-step semantics is expressed in the form JeK (σ , ρ,ψ) = (l,σ ′), which means that given

the heap σ , environment ρ and valueψ for this , the expression e evaluates to the value l with the

updated heap σ ′
. The semantics is standard, thus we omit detailed explanation and refer the reader

to the technical report [Liu et al. 2020]. The only note is that non-initialized fields are represented

by missing keys in the object, instead of a null value. Newly initialized objects have no fields, and

new fields are gradually inserted during initialization until all fields defined by the class have been

assigned.

Note that this language does not enjoy initialization safety, and it is the task of later sections to

make it safe. However, the language enjoys local reasoning about initialization.

2.2 Definitions
Definition 2.1 (reachability). We write σ ⊨ l ; l ′ to say that an object l ′ is reachable from l in

the heap σ . Reachability is formally defined according to the following rules:

l ∈ dom(σ)

σ ⊨ l ; l

σ ⊨ l0 ; l1 (_,ω) = σ (l1) ∃ f . ω(f) = l2 l2 ∈ dom(σ)

σ ⊨ l0 ; l2

Definition 2.2 (reachability for set of locations).

σ ⊨ L ; l ≜ ∃l ′ ∈ L.σ ⊨ l ′ ; l
σ ⊨ l ; L ≜ ∃l ′ ∈ L.σ ⊨ l ; l ′

Definition 2.3 (cold). An object is cold if it exists in the heap, formally

σ ⊨ l : cold ≜ l ∈ dom(σ)

Definition 2.4 (warm). An object is warm if all its fields are assigned, formally

σ ⊨ l : warm ≜ ∃(C,ω) = σ (l)
∧

f ields(C) ⊆ dom(ω)

Definition 2.5 (hot). An object is hot if all reachable objects are warm, formally

σ ⊨ l : hot ≜ l ∈ dom(σ)
∧

∀l ′.σ ⊨ l ; l ′ =⇒ σ ⊨ l ′ : warm

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:7

From the definitions, it is easy to see that hot implieswarm andwarm implies cold .

2.3 Weak Monotonicity
The idea of monotonicity dates back to heap monotonic typestates by Fähndrich and Leino [2003].

There are, however, at least three different concepts of monotonicity.

Weak monotonicity means that initialized fields continue to be initialized. More formally, we

may prove the following theorem:

Theorem 2.6 (Weak Monotonicity).

JeK (σ , ρ,ψ) = (l,σ ′) =⇒ σ ⪯ σ ′

In the above, the predicate weak monotonicity (σ ⪯ σ ′
) is defined below:

Definition 2.7 (Weak Monotonicity).

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ). (C,ω) = σ (l) =⇒ (C,ω ′) = σ ′(l)
∧

dom(ω) ⊆ dom(ω ′)

While weak monotonicity is sufficient to justify local reasoning about initialization, stronger

monotonicity is required for initialization safety. For example, the freedom model [Summers and

Müller 2011] enforces strong monotonicity:

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ). σ ⊨ l : µ =⇒ σ ′ ⊨ l : µ

In the above, we abuse the notation by using µ to denote either cold, warm or hot. Strong
monotonicity additionally ensures that hot objects continue to be hot. Therefore, it is always safe

to use hot objects freely. However, to enforce safer usage of already initialized fields of non-hot

objects, we need an even stronger concept, perfect monotonicity:

σ ⪯ σ ′ ≜ ∀l ∈ dom(σ). (C,ω) = σ (l) =⇒

(C,ω ′) = σ ′(l)
∧

∀f ∈ dom(ω).σ ⊨ ω(f) : µ =⇒ σ ′ ⊨ ω ′(f) : µ

In the above, we abuse the notation by writing directly ω ′(f) to require that dom(ω) ⊆ dom(ω ′).

Perfect monotonicity in addition ensures that initialization states of object fields are monotone. It

would be problematic if a field is initially assigned a hot value and later reassigned to a non-hot

value.

2.4 Stackability
Conceptually, stackability ensures that all newly created objects during the evaluation of an

expression e are warm, i.e. all fields of the objects are assigned. Formally, the insight can be proved

as a theorem:

Theorem 2.8 (Stackability).

JeK (σ , ρ,ψ) = (l,σ ′) =⇒ σ ≪ σ ′

The predicate σ ≪ σ ′
is defined below; it says that for any object in the heap σ ′

, either the object

is warm, or the object pre-exists in the heap σ .

Definition 2.9 (Stacking).

σ ≪ σ ′ ≜ ∀l ∈ dom(σ ′).σ ′ ⊨ l : warm
∨

l ∈ dom(σ)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:8 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

1
2

4

3

time 5 6

1
2

4

3

5 6

stacked non-stacked

Fig. 1. Each block represents the initialization duration of an object, i.e., from the creation of the object to
the point where all fields are assigned.

Definite assignment [Gosling et al. 2015] can be used to enforce stackability in programming

languages. Java, however, enforces definite assignment only for final fields.

If we push an object onto a stack when it comes into existence, and remove it from the stack

when all its fields are assigned, we will find that the object to be removed is always at the top of

the stack. This is illustrated in Figure 1.

2.5 Scopability
Scopability says that the access to uninitialized objects should be controlled by static scoping.

Intuitively, it means that a method may only access pre-existing uninitialized objects through its

environment, i.e. method parameters and this.

Objects under initialization are dangerous when used without care, therefore the access to them

should be controlled. Scopability imposes discipline on accessing uninitialized objects. If we regard

uninitialized objects as capabilities, then scopability restricts that there should be no side channels

for accessing those capabilities. All accesses have to go through the explicit channel, i.e. method

parameters and this. In contrast, global variables or control-flow effects such as algebraic effects

may serve as side channels for teleporting values under initialization. To maintain local reasoning

about initialization, an initialization system needs to make sure that only initialized values may

travel by side channels.

More formally, we can prove the following theorem:

Theorem 2.10 (Scopability).

JeK (σ , ρ,ψ) = (l,σ ′) =⇒ (σ , codom(ρ) ∪ { ψ }) ⋖ (σ ′, { l }) (1)

In the above, the predicate (σ , L) ⋖ (σ ′, L′) is defined below:

Definition 2.11 (Scoping). A set of addresses L′ ⊆ dom(σ ′) is scoped by a set of addresses L ⊆

dom(σ), written (σ , L) ⋖ (σ ′, L′), is defined as follows

(σ , L) ⋖ (σ ′, L′) ≜ ∀l ∈ dom(σ). σ ′ ⊨ L′ ; l =⇒ σ ⊨ L ; l

The theorem means that if e evaluates to l , then every location l ′ reachable from l in the new

heap is either fresh, in that it did not exist in the old heap, or it was reachable from codom(ρ) ∪ψ
in the old heap.

Note that in the definition of scopinд, we use σ ⊨ L ; l instead of σ ′ ⊨ L ; l . This is because in
a language with mutation, l may no longer be reachable from L in σ ′

due to reassignment. This can

be seen in Figure 2.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:9

1

7
2

4

3

5

6

1

7 2
4

3

5

6
8

9

˟

Heap σ Heap σ’

⟦e⟧(σ, ø, 2)

Fig. 2. Each circle represents an object and numbers are locations. An arrow means that an object holds a
reference to another object. The thick circles and links on the right heap are new objects and links created
during the execution. Due to scopability, we have (σ , {2}) ⋖ (σ ′, {8}). This means that if the result object 8
reaches any object which pre-exists in the heap σ , then the object must be reachable from object 2 in the
heap σ . The object 7 which is reachable from the object 2 in the heap σ , is no longer reachable from object 2
in the heap σ ′ due to the removal of the link from object 1 to object 7.

The property of scopability holds intuitively, but its proof is not obvious at all. The subtlety is in

proving the case e1.m(e2). Suppose we have Je1K (σ1, ρ,ψ) = (l1,σ2) and Je2K (σ2, ρ,ψ) = (l2,σ3). By
the induction hypothesis, we have (σ1, codom(ρ)∪{ ψ })⋖(σ2, l1) and (σ2, codom(ρ)∪{ ψ })⋖(σ3, l2).
However, we do not know that (σ1, codom(ρ) ∪ { ψ }) ⋖ (σ3, l1). We need some invariant saying

that scoping relations are preserved. That invariant has to be carefully defined, as not all scoping

relations are preserved due to reassignment. We refer the reader to the technical report for more

detailed discussions [Liu et al. 2020].

2.6 Local Reasoning about Initialization
With weak monotonicity, stackability and scopability, we may prove the theorem of local reasoning

about initialization, which says that only hot objects can be produced from an expression in a hot

environment.

Lemma 2.12 (Local Reasoning). If (σ , L) ⋖ (σ ′, L′), σ ≪ σ ′, σ ⪯ σ ′ and σ ⊨ L : hot , then we
have σ ′ ⊨ L′ : hot .

Proof. Let’s consider any object l that is reachable from L′, i.e. σ ′ ⊨ L′ ; l . Depending on

whether l ∈ dom(σ), there are two cases.

• Case l < dom(σ).
Using the fact that σ ≪ σ ′

, we know σ ′ ⊨ l : warm.

• Case l ∈ dom(σ).
Using the fact that (σ , L) ⋖ (σ ′, L′), we have σ ⊨ L ; l . From the premise σ ⊨ L : hot , we
have σ ⊨ l : warm. From σ ⪯ σ ′

, we have σ ′ ⊨ l : warm.

In both cases, we have σ ′ ⊨ l : warm. Then by definition, we have σ ′ ⊨ L′ : hot . □

Theorem 2.13 (Local Reasoning). If JeK (σ , ρ,ψ) = (l,σ ′) and σ ⊨ { ψ } ∪ codom(ρ) : hot , then
we have σ ′ ⊨ l : hot .

Proof. Immediate from Lemma 2.12, whose preconditions are satisfied by Theorem 2.10, Theo-

rem 2.6 and Theorem 2.8. □

This theorem echoes the insight in the freedommodel [Summers andMüller 2011]: if a constructor

is called with all arguments committed, then the constructed object is also committed.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:10 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

Table 1. The three abstractions of initialization states.

cold A cold object may have uninitialized fields.

warm A warm object has all its fields initialized.

hot A hot object has all its fields initialized and only reaches hot objects.

3 THE BASIC MODEL
In this section, we take advantage of local reasoning about initialization to develop a type system

that ensures initialization safety of objects.

3.1 Types
From the last section, we see that there are three natural abstractions of initialization states, as

summarized in Table 1. If we posit the abstractions cold, warm and hot as types, we arrive at a type
system for safe initialization of objects, which we call the basic model. Types in the language have

the form Cµ
:

Ω ::= { f1, f2, . . . }
µ ::= cold | warm | hot | Ω
T ::= Cµ

The typeCΩ
is introduced to support the usage of already initialized fields — Ω denotes the set of

initialized fields. The type is well-formed if Ω contains only fields of the class C . In languages that

are equipped with an annotation system, such as Java, the typeCµ
can be written using annotations

(e.g.C @warm andC @cold), while a type without annotation can be assumed to be hot. Types like
CΩ

are mainly used internally in the type system, thus there is no need to write them explicitly.

A typeCµ1
is a subtype of another typeCµ2

, writtenCµ1 <: Cµ2
, if µ1 ⊑ µ2. The lattice for modes

µ is defined below:

hot ⊑ µ warm ⊑ Ω Ω1 ∪ Ω2 ⊑ Ω1 µ ⊑ cold

The modes hot and cold are respectively bottom and top of the lattice, and Ω is in the middle.

Methods are now annotated with modes, i.e., in @µ def m(x :T) : T = e , the mode µ means this
has the type Cµ

inside the methodm of the class C . We will propose an inference system to avoid

the annotations in Sections 4 and 5. The semantics of the language remain the same as the language

introduced in section 2.

3.2 Type System
We present expression typing and definition typing in Figure 3 and Figure 4. In an expression

typing judgment Γ;T ⊢ e : U , T is the type for this . Note that for simplicity of presentation, the

class table Ξ is omitted in expression typing judgments.

Both the rules T-New and T-Invoke take advantage of local reasoning about initialization. The
rule T-SelHot capitalizes on the fact that a hot object may only reach hot objects. The rules

T-SelWarm and T-SelObj enforce that field selection takes the declared type of the field.

The rule T-Block demands that we only reassign hot values to fields; that is how we enforce

perfect monotonicity in the system. It also restricts that only initialized fields may be mutated. The

motivation for this restriction is to reject programs like class C { a = 10; var a = 5 }.

When type checking a program (C,D), the rule T-Prog ensures that every class is well-typed,

and the entry class D has the expected form. In checking a class, the rule T-Class first checks the

field definitions, assuming the typeCΩi
for this , where Ωi contains already initialized fields. It also

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:11

ensures that each method is well-typed. In type checking a field definition var f :T = e , the rule
T-Field ensures that the expression e can be typed as T in an empty environment. In checking a

method, the rule T-Method checks that the method body e conforms to the method return type S ,
assuming this to take the mode of the method.

Expression Typing Γ;T ⊢ e : T

Γ;T ⊢ e : T1 T1 <: T2

Γ;T ⊢ e : T2
(T-Sub)

x : U ∈ Γ

Γ;T ⊢ x : U
(T-Var)

Γ;T ⊢ this : T (T-This)

Γ;T ⊢ e : Dhot Cµ = fieldType(D, f)

Γ;T ⊢ e . f : Chot
(T-SelHot)

Γ;T ⊢ e : Dwarm U = fieldType(D, f)

Γ;T ⊢ e . f : U
(T-SelWarm)

Γ;T ⊢ e : DΩ f ∈ Ω U = fieldType(D, f)

Γ;T ⊢ e . f : U
(T-SelObj)

Ti = constrType(C) Γ;T ⊢ ei : C
µi
i C

µi
i <: Ti µ = (⊔ µi) ⊓warm

Γ;T ⊢ new C(e) : Cµ (T-New)

Γ;T ⊢ e : Cµ0 (µm,Ti ,D
µr) =methodType(C,m)

µ0 ⊑ µm Γ;T ⊢ ei : D
µi
i D

µi
i <: Ti µ = (⊔ µi = hot)?hot : µr

Γ;T ⊢ e .m(e) : Dµ (T-Invoke)

Γ;T ⊢ e1. f : Cµ Γ;T ⊢ e2 : Chot Γ;T ⊢ e : T1

Γ;T ⊢ e1. f = e2; e : T1
(T-Block)

Fig. 3. Expression typing of the basic model

The soundness theorem says that a well-typed program does not get stuck at runtime.

Theorem 3.1 (Soundness). If ⊢ P, then ∀k . JPK (k) , Error

The meta-theory takes the approach of step-indexed definitional interpreters [Amin and Rompf

2017]. For a step-indexed interpreter, there are three possible outcomes: (1) time out; (2) error; (3) a

resulting value and an updated heap. Initialization safety is implied by soundness, as initialization

errors will cause the program to fail at runtime. We refer the reader to the technical report for more

details about the meta-theory [Liu et al. 2020].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:12 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

Program Typing ⊢ P

Ξ = C → C Ξ(D) = class D { @hot def main() : T = e } Ξ ⊢ C

⊢ (C,D)
(T-Prog)

Class Typing Ξ ⊢ C

Ω0 = f̂ Ξ;CΩi ⊢ Fi Ωi+1 = Ωi ∪ { fi } Ξ;C ⊢ M

Ξ ⊢ class C(f̂ :T) { F M }

(T-Class)

Field Typing Ξ;CΩ ⊢ F

∅;CΩ ⊢ e : T

Ξ;CΩ ⊢ var f : T = e
(T-Field)

Method Typing Ξ;C ⊢ M

x :T ;Cµ ⊢ e : S

Ξ;C ⊢ @µ def m(x :T) : S = e
(T-Method)

Fig. 4. Definition typing of the basic model

3.3 Typestate Polymorphism
A key design decision of the type system is to embrace flow-insensitivity. This follows an insight

from Summers and Müller [2011] that we may achieve typestate polymorphism via subtyping in a

flow-insensitive system.

Otherwise, if the system were flow-sensitive, we would have to track the change of typestates of

this inside a method. Suppose we track the changes of a method m with Cµ1 → Cµ2
, which means

that the method m requires this to conform to Cµ1
before the call, and this takes the typestate Cµ2

after the call, similar to what is done by Qi and Myers [2009]. This creates a difficulty for methods

that can be called for any typestates of this, as the following example shows:

1 class C {

2 // ...

3 def g(): Int = 100 // ∀µ .Cµ → Cµ

4 }

In the code above, the method g can be called for any typestate of this. Representing the fact

in the system would require parametric polymorphism, which complicates the solution. In fact,

the system proposed by Qi and Myers [2009] does not support typestate polymorphism and thus

invalidates such simple use cases.

3.4 The Discipline of Authority
An important discipline that our type system follows implicitly is what we call the discipline of
authority. The discipline says that we may only consider the initialization state of an object to be

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:13

advanced at field initialization points in the class constructor, but not at arbitrary assignments to

fields.

The issue can be illustrated with the following example:

1 class C(a: A @cold) {

2 var x: A @cold = { foo(); a }

3 def foo() = { this.x = new A; this.a = new A }

4 }

The @cold annotation on the field x says that it may be initialized with a cold object. However,

this annotation does not remove the transitive nature of a hot reference: given a reference r of

type C , although r.x is allowed to hold a cold object, the reference r can be considered hot only
when r.x actually contains a hot object.

In this example, the method foo() assigns a new (hot) object to fields x and a, so one might think

that this should be considered hot (i.e., fully initialized) after a call to foo(). The initializer of x

calls foo() and then returns the cold value a as the initial value for x. Although this.x holds a hot

object immediately after the call to foo() in the initializer, this is no longer the case after the field

initialization of x. The discipline of authority prevents us from considering this to be hot after the

call to foo(). Without it, this example would violate monotonicity, in that the state of this would

transition from hot to warm after the assignment.

Our type system by design guarantees that the this object still takes the typestateC { a }
after the

call to foo() (indicating that field a is initialized but x is not), as it only advances the initialization

state of an object at field initialization points, never at field assignment points. This can be seen in

the typing rule T-Block: suppose e1 is this, after the assignment we do not change the typestate

of this in checking e (it remains to be T).
While the discipline of authority is followed implicitly by our type system, it arises as an explicit

proof obligation in the meta-theory, and we do verify it for our type system. The meta-theory is

based on store typing [Pierce 2002, Chapter 13], which is an abstraction of the concrete heap. We

use Σ to range over store typings, which are maps from locations to types, i.e. Loc ⇀ Type . In the

meta-theory, we need to define the following predicate:

Σ � Σ′ ≜ ∀l ∈ dom(Σ).Σ(l) = CΩ =⇒ Σ′(l) = CΩ

In the above, Σ and Σ′
refer to the store typings before and after evaluating an expression when

the predicate is used. In the proof, we need to show that in evaluating an expression, if the object

at location l is considered to have the initialization state CΩ
before the evaluation of an expression,

it must be considered to still have the initialization state CΩ
after the evaluation of the expression.

Note that the definition of the predicate Σ � Σ′
only talks about types of the form CΩ

. The store

typing never contains types like Ccold
; a value takes such a type by subtyping. For the type Cwarm

,

the only possible next monotone state is Chot
, so it is impossible for monotonicity to fail. For the

type Chot
, monotonicity guarantees that the type stays the same.

The discipline of authority prevents us from advancing the initialization states of existing objects

during the evaluation of an expression. It leaves only the possibility to advance the initialization

state of objects at field initialization points in the constructor. At the end of the class body when all

fields are initialized, we promote the type of the fresh object to be warm. Its promotion to hot may

be delayed until a group of cyclic objects becomes hot together, which is called a commitment point
by Summers and Müller [2011].

We believe the discipline of authority is already necessary for a system that enforces strong

monotonicity, such as the freedom model [Summers and Müller 2011], but it has not been made

explicit in previous work.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:14 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

4 TYPE-AND-EFFECT INFERENCE, INFORMALLY
The type system proposed in the last section depends on verbose annotations, which are an obstacle

for its adoption in practice. In this section, we propose a type-and-effect inference system [Lucassen

and Gifford 1988; Nielson et al. 1999] to significantly cut down the syntactic overhead.

We first discuss the design of the type-and-effect inference system informally with examples.

The formal presentation of the inference system comes in Section 5.

4.1 Potentials and Effects
The general idea is to track field accesses in the program with effects, and then check that only

initialized fields are accessed. Effects over-approximate the uninitialized fields that an expression

could possibly access. If the effect of an expression is empty, it means that at runtime, it is impossible

for the expression to access an uninitialized field.

To deal with aliasing of potentially uninitialized objects, we introduce the concept of potentials.
Potentials over-approximate the set of uninitialized objects that an expression appearing in the

program could evaluate to. A potential encodes an uninitialized object in the form of a path, such

as C.this, C.this.f or C.this.m. If an expression appearing in the program can evaluate to an

uninitialized object, then the potential of the expression must include a path to that object. If an

expression in the program has an empty set of potentials, then, at runtime, the expression can only

evaluate to an object that is hot.

In this section, we motivate effects and potentials informally using examples. The full formal

syntax of effects and potentials is given in Section 5.2.

Consider the following erroneous program, which accesses the field y before it is initialized:

1 class C {

2 var x: Int = this.y // C.this.y!

3 var y: Int = 10

4 }

A natural idea to ensure safe initialization is to analyze the fields that are accessed at each step

of initialization, and check that only initialized fields are accessed. This leads to the fundamental

effect in initialization: field access effect, e.g. C .this . f !.
Fields may also be accessed indirectly through method calls, as the following code shows:

1 class C {

2 var x: Int = this.m() // C.this.m<>

3 var y: Int = 10

4 def m(): Int = this.y // C.this.y!

5 }

For this case, we may introduce method calls as effects, which act as placeholders for the actual

effects that happen in the method: method call effects, e.g. C .this .m♢.
If we first analyze effects of the method m and map the effect C .this .m♢ to the set of effects

{C .this .y!}, then we may effectively check the initialization error in the code above.

One subtlety is how to handle aliasing. We illustrate with the following example:

1 class Knot {

2 var self = this // potentials of "self": { Knot.this }

3 var x: Int = self.x // effects of "self.x": { Knot.this.self.x! }

4 }

In the code above, the field x is used via the alias self before it is initialized. To check such errors,

we need a way to represent and track the aliasing information in the system. That leads us to

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:15

the concept of potentials introduced in the beginning of this section. In the code example above,

the field self takes the potentials of its initializer, i.e. the set { Knot.this }. Now an initialization

checker may take advantage of the aliasing information and report an error for the code self.x.

To enforce that wemay only assign hot values to a field in field assignment (not field initialization),

we introduce promotion effects that promote potentials to be hot, e.g., C .this ↑. The checking
system will check that only hot objects are promoted. The following example illustrates the usage

of the effect:

1 class Reporter(ctx: Context} {

2 val buffer: Buffer = { this.m(); new Buffer } // Reporter.this.m<>

3 def m(): Unit = { ctx.reporter = this } // Reporter.this↑

4 }

In the code above, themethod call effectReporter .this .m♢ incurs the promotion effectReporter .this↑.
That is, the method this.m() may only be called when this is hot because it assigns this to a

field. The system finds that at the point of the call this.m(), the value of this is not hot, so such

promotion is illegal.

Semantically, potentials keep track of objects possibly under initialization in order to maintain a

directed segregation of initialized objects and objects under initialization: objects under initialization
may point to initialized objects, but not vice versa. A promotion effect means that the object pointed

to by the potential ascends to the initialized world, and the system gives up on tracking it. The

system will have to ensure that by the time this happens, the object is hot.

Note that field access C .this .a! and field promotion C .this .a↑ are different effects, because field
access does not necessarily need to promote the field, as demonstrated by the following example:

1 class Knot {

2 var a = this

3 var b = this.a // Knot.this.a! , but no promotion

4 }

Aliasing and promotion may also happen through methods, as the following example shows:

1 class Reporter(ctx: Context) {

2 ctx.reporter = this.m() // Reporter.this.m↑

3 def m() = this // potentials of m: { Reporter.this }

4 }

The type-and-effect system knows that the return value of the method m aliases this, thus the

promotion of this.m() at line 2 indirectly promotes this to hot.

A similar distinction is drawn on methods: (1) the method invocation effect C .this .m♢ means

that the method m is called with the receiver this; (2) the method promotion effectC .this .m↑means

that the return value of the call this.m is promoted to hot.

4.2 Two-Phase Checking
A common issue in program analysis is how to deal with recursive methods. We tackle the problem

with two phase checking. In the first phase, the system computes effect summaries for methods and

fields. In the second phase, the system checks that no fields are used before they are initialized. The

checking phase uses the effect summaries from the first phase.

For example, given the following program:

1 class Foo {

2 var a: Int = h()

3 def h(): Int = g()

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:16 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

Table 2. Effect summaries for the methods h and д.

method effects potentials

h { Foo.this .д♢ } { Foo.this .д }

д { Foo.this .h♢ } { Foo.this .h }

4 def g(): Int = h()

5 }

In the first phase, the system computes effect summaries for the methods h and g, as shown in

Table 2.

In the second phase, the system checks field initializations in the class body. While checking the

method call h(), the analysis propagates the effects associated with the method h until it reaches the

fixed point { Foo.this .д♢, Foo.this .h♢ }. As the set does not contain accesses to any uninitialized

fields of this nor invalid promotions, the program passes the check. Note that the domain of effects

has to be finite for the existence of the fixed point.

4.3 Full-Construction Analysis
Another common issue in analysis is how to handle virtual method calls. The approach we take is

full-construction analysis: we treat the constructors of concrete classes as entry points, and check all
super constructors as if they were inlined. The analysis spans the full duration of object construction.

This way, all virtual method calls on this can be resolved statically. From our experience, full-

construction analysis greatly improves user experience, as no annotations are required for the

interaction between subclasses and superclasses.

The following problem also motivates us to check the full construction duration of an object,

which is also known as the fragile base class problem:

1 class Base { def g(): String = "hello" }

2 class Foo extends Base { val a = this.g() }

3 class Bar extends Base {

4 val b: String = "b"

5 override def g(): String = this.b

6 }

This program is correct. However, if we follow a type-based approach like the freedom model

[Summers and Müller 2011], in order to call g() in the class Foo, the method Base.g has to be

annotated @free, so that it may not access any fields on this. For soundness, the overriding method

Bar.g has to be annotated @free too: but now it may not access the field this.b in the body of the

method Bar.g. This unnecessarily restricts expressiveness of the system.

Moreover, we believe it is the only practical way to handle complex language features such as

properties and traits. In languages such as Scala and Kotlin, fields are actually properties, accesses

of public field are dynamic method calls, as the following code shows:

1 class A { val a = "Bonjour"; val b: Int = a.size }

2 class B extends A { override val a = "Hi" }

3 new B

In the code above, when the constructor of class B calls the constructor of class A, the expression

a.size will dynamically dispatch to read the field a declared in class B, not the field a declared in

class A. This results in a null-pointer exception at runtime because at the time, the field a in class B

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:17

is not yet initialized. Without full-construction analysis, it is difficult to make the analysis sound

for the code above.

Closed World Assumption. Full-construction analysis does not assume a closed world in the

sense that it does not depend on the program entry as the analysis entry point. In contrast, it takes

constructors of concrete classes as analysis entry points. The analysis does require the code of

constructors of superclasses to be available.

Modularity. While full-construction analysis is capable of handling language features like

traits and properties, it pays the price of modularity in the sense that if a superclass is changed,

the subclasses have to be recompiled. We believe this is a worthy price to pay. First, the coupling

between a superclass and its subclasses is well-known in object-oriented programming. For example,

if a superclass adds a new method, then all its subclasses have to be recompiled to check proper

overriding. Second, the ideal granularity for modular checking is not classes, but projects. From

our experience with real-world projects, most subtle initializations happen within the same project.

Third, the type system presented in Section 3 can serve as a coarse-grained type specification at

project boundaries.

4.4 Cyclic Data Structures
Cyclic data structures are supported with an annotation@cold on class parameters, as the following

example demonstrates:

1 class Parent { val child: Child = new Child(this) }

2 class Child(parent: Parent @cold) {

3 val friend: Friend = new Friend(this.parent)

4 }

5 class Friend(parent: Parent @cold) { val tag = 10 }

The annotation @cold indicates that the actual argument to parent during object construction

might not be initialized. The type-and-effect system will ensure that the field parent is not used

directly or indirectly when instantiating Child. However, aliasing the field to another cold class

parameter is fine, thus the code new Friend(this.parent) at line 3 is accepted by the system. This

allows programmers to create complex aliasing structures during initialization.

Our system tracks the return value of new Child(this) as the set of potentials { warm[Child] }.
All fields of a warm value are assigned, but they may hold values that are not fully initialized.

The inference system also takes advantage of local reasoning about initialization (Section 2): the

whole cyclic data structure becomes hot at the same time when the first object in the group, i.e. the

instance of Parent, becomes warm. This is called commitment point in the work of Summers and

Müller [2011].

4.5 Relationship with the Type System
The type-and-effect system is intended to serve as an inference system for the type system in

Section 3. Although simpler, the type system there requires annotations and thus forms an obstacle

for adoption in practice. Meanwhile, the type-and-effect system scales better to complex language

features like properties, inner classes and functions, and integrates better with compilers as no

changes to the type system of the compiler are needed.

That said, the type-and-effect system is based on the type system in Section 3, and can be regarded

as an inference system for a fragment of the type system there. For example, consider the following

code:

1 class C {

2 val d: D = new D(this)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:18 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

3 def foo = this.n

4 foo

5 val n = 10

6 }

7 class D(c: C @cold) {

8 val tag = 10

9 }

The field d is associated with the potentials { warm[D] }, so it may take the type Dwarm
. The

method foo is associated with the effects { this .n! }, which suggests that this should conform to

the type C { n }
when the method foo is called.

In practice, the type-and-effect system does not bother to compute the exact type annotations

nor elaborate the program with such type annotations, because the type elaboration is not useful

in later compiler phases. Instead, it only checks that all the effects are safe in the constructor.

The fragment of the type system that we identify demands that (1) method arguments must be
hot, and (2) non-hot class parameters must be annotated. Note that the receiver of a method call, e.g.

this, is not considered as an argument of the call. The fragment supports calling methods on this
in the constructor, as well as creation of cyclic data structures. There are several considerations for

the restrictions.

First, from practical experience, there is little need to use non-hot values as method arguments.

Meanwhile, virtual method calls on this are allowed, which covers most use cases in practice [Gil

and Shragai 2009].

Second, it agrees with good programming practices that values under initialization should not

escape [Bloch 2008]. Therefore, when there is the need to pass non-hot arguments to a constructor,

it is a good practice to mark them explicitly.

Third, demanding method arguments to be hot saves us from changing the core type system of a

language to check safe overriding of virtual methods.

5 FORMALIZING TYPE-AND-EFFECT INFERENCE
In this section, we formalize the type-and-effect system presented informally in the last section.

The full soundness proof of the system is presented in the technical report [Liu et al. 2020].

5.1 Syntax and Semantics
Our language is almost the same as the language introduced in section 2, except for the definition

of class parameters. In a class definition like class C(f̂ :T) { F M }, we introduce cold class
parameters, which have the syntax f̃ . Cold class parameters may take a value that is not transitively

initialized. A class parameter f̂ is also a field of its defining class. By default, we use f to range

over all fields, f̂ over class parameters, and f̃ over cold class parameters.

The tilde annotation f̃ is only used in the type-and-effect system; it does not have runtime

semantics. That is the only annotation that is required in the source code.

The semantics is the same as the language in section 2, we thus omit the details.

5.2 Effects and Potentials
As seen from Figure 5, the definition of potentials (π) and effects (ϕ) depends on roots (β). Roots are
the shortest path that represents an alias of a value that may not be transitively initialized. There

are three roots in the system:

• C .this represents an alias of this inside class C .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:19

• warm[C] represents an alias of a value of class C , all fields of which are assigned, but which

may not be transitively initialized.

• cold represents a value whose initialization status is unknown. It is used to represent the

potentials of cold class parameters. Field accesses or method calls on such an object are

forbidden.

Potentials (π) represent aliasing information. They extend roots with field aliasing β . f and

method aliasing β .m. Field aliasing β . f represents aliasing of the field f of β , while method aliasing

β .m represents aliasing of the return value of the methodm with the receiver β .
Effects (ϕ) include field accesses, method calls, and promotions of possibly uninitialized values.

A promotion effect is represented with π ↑, which enforces that the potential π is transitively

initialized. The field access effect β . f ! means that the field f is accessed on β . The method call

effect β .m♢ means that the methodm is called on β .
There are three helpers for the creation of potentials and effects:

• Field selection: select(Π, f)
• Method call: call(Π,m)

• Class instantiation: init(C, f̂i = Πi)

They are used in expression typing to summarize the potentials and effects of expressions. A key

to understanding the definitions is that the promotion effect π↑ is the same as saying that π should

be hot, and the result of an expression that has the empty set of potentials is hot.

Bounded Length. To make sure that the domain of effects and potentials is finite, the current

system restricts the maximum length of potentials and effects to be two. In the implementation

(Section 6), the maximum length of effects is 3. The bound is chosen in order to support calling

methods on inner class instances, which is relatively common in Scala.

If the length of potentials exceeds the limit, the system checks that the potential is hot by
producing a promotion effect. This can be seen from the last line of the definitions of the helper

methods select and call .
Limiting the length will lead to incompleteness relative to the type system presented in Section 3.

This does not pose a problem in practice (Section 7), due to the fact that fields usually hold hot

values and methods return hot values. On the other hand, if it becomes an issue, the user may

write explicit type annotations and the inference system can be extended to take advantage of the

explicit type annotations.

5.3 Expression Typing
Expression typing (Figure 6) has the form Γ;C ⊢ e : D ! (Φ,Π), which means that the expression

e in class C under the environment Γ, can be typed as D, and it produces effects Φ and has the

potentials Π. Generally, when typing an expression, the effects of sub-expressions will accumulate,
while potentials may be refined (via selection), or promoted (used as arguments to methods or

assigned to a field).

The definitions assume several helper methods, such as fieldType(C, f), methodType(C,m) and

constrType(C), to look up in class table Ξ the type, respectively, of fieldC . f , of methodC .m and of

the constructor of C .

5.4 Definition Typing
Definition typing (Figure 7) defines how programs, classes, fields and methods are checked. The

checking happens in two phases:

(1) first phase: conventional type checking is performed and effect summaries are computed;

(2) second phase: effect checking is performed to ensure initialization safety.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:20 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

Potentials and Effects
T ::= C | D | E | · · · type

β ::= C .this | warm[C] | cold root

π ::= β | β . f | β .m potential

Π ::= { π1, π2, · · · } potentials

ϕ ::= π↑ | β . f ! | β .m♢ effect

Φ ::= { ϕ1,ϕ2, · · · } effects

Ω ::= { f1, f2, · · · } fields

∆ ::= fi 7→ (Φi ,Πi) field summary

S ::= mi 7→ (Φi ,Πi) method summary

E ::= C 7→ (∆,S) effect table

Select
select(Π, f) = Π.map(π ⇒ select(π , f)).reduce(⊕)

select(β, f̃) = (∅, {cold})

select(β, f̂) = (∅, ∅)
select(β, f) = ({β . f !}, {β . f }) where β , cold

select(cold, f) = ({cold↑}, ∅)
select(π , f) = ({π↑}, ∅) where π = β . f or π = β .m

Call
call(Π,m) = Π.map(π ⇒ call(m, π)).reduce(⊕)
call(β,m) = ({β .m♢}, {β .m}) where β , cold

call(cold,m) = ({cold↑}, ∅)
call(π ,m) = ({π↑}, ∅) where π = β . f or π = β .m

Init
init(C, f̂i = Πi) = (∪Πk,j↑, {warm[C]}) if ∃ f̃j ,Πj , ∅

init(C, f̂i = Πi) = (∪Πi↑, ∅)

Helpers
Π↑ = { π↑ | π ∈ Π }

(A1,A2) ⊕ (B1,B2) = (A1 ∪ B1,A2 ∪ B2)

Fig. 5. Potentials and Effects

The two-phase checking is reflected in the typing rule T-Prog. To type check a program (C,D),
first each class is type checked separately for well-typing and the effect summary for fields ∆c and

methods Sc is computed using class typing Ξ ⊢ C ! (∆,S). The result of class typing is stored in

the effect table E, which is then used for modular effect checking of each class. Effect checking is

performed modularly on each class with the help of the effect table E. The typing rule T-Prog also

checks that the entry class D is well-typed.

When type checking a class, the rule T-Class checks that the body fields and methods are

well-typed and computes the associated effects and potentials. The effects and potentials associated

with a field are the effects and potentials of its initializer (the right-hand-side expression). The

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:21

Expression Typing Γ;C ⊢ e : D ! (Φ,Π)

x : D ∈ Γ

Γ;C ⊢ x : D ! (∅, ∅)
(T-Var)

Γ;C ⊢ this : C ! (∅, {C .this}) (T-This)

Γ;C ⊢ e : D ! (Φ,Π) (Φ′,Π′) = select(Π, f) E = fieldType(D, f)

Γ;C ⊢ e . f : E ! (Φ ∪ Φ′,Π′)
(T-Sel)

Γ;C ⊢ e0 : E0 ! (Φ,Π) Γ;C ⊢ ei : Ei ! (Φi ,Πi)

(xi :Ei ,D) = methodType(E0,m) (Φ′,Π′) = call(Π,m)

Γ;C ⊢ e0.m(e) : D ! (Φ ∪ Φi ∪ Πi↑ ∪ Φ′,Π′)
(T-Call)

f̂i :Ei = constrType(C) Γ;C ⊢ ei : Ei ! (Φi ,Πi) (Φ′,Π′) = init(C, f̂i = Πi)

Γ;C ⊢ new C(e) : C ! (∪Φi ∪ Φ′,Π′)
(T-New)

Γ;C ⊢ e0 : E0 ! (Φ0,Π0) E1 = fieldType(E0, f)
Γ;C ⊢ e1 : E1 ! (Φ1,Π1) Γ;C ⊢ e2 : E2 ! (Φ2,Π2)

Γ;C ⊢ e0. f = e1; e2 : E2 ! (Φ0 ∪ Φ1 ∪ Π1↑ ∪Φ2,Π2)
(T-Block)

Fig. 6. Expression Typing

effects and potentials associated with a method are the effects and potentials of the body expression

of the method. The effect summaries are used during the second phase in T-Check, which checks

that given the already initialized fields, the effects on the right-hand-side of each field are allowed.

The typing rule T-Field checks the right-hand-side expression e in an empty typing environment,

as there are no variables in a class body (class parameters are fields of their defining class). In the

typing rule T-Method, the method parameters x : D are used as the typing environment to check

the method body.

5.5 Effect Checking
The effect checking judgment E;CΩ ⊢ Φ (Figure 8) means that the effects Φ are permitted inside

class C when the fields in Ω are initialized. It first checks that there is no promotion of this in the

closure of the effects, as the underlying object is not transitively initialized, so promotion is illegal.

Then it checks that each accessed field is in the set Ω, i.e., only initialized fields are used.

The closure of effects is presented in a declarative style for clarity, but it has a straight-forward

algorithmic interpretation: it just propagates the effects recursively until a fixed-point is reached.

The fixed-point always exists as the domain of effects and potentials is finite for any given program.

The main step in fixed-point computation is the propagation of effects and potentials. In effect

propagation E ⊢ ϕ ; Φ, field access β . f ! is an atomic effect, thus it propagates to the empty set.

For a promotion effect π ↑, we first propagate the potential π to a set of potentials Π, and then

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:22 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

Program Typing ⊢ P

Ξ = C 7→ C Ξ(D) = class D { def main : T = e } ∅;D ⊢ e : T ! (Φ,Π)

Ξ ⊢ C ! (∆c ,Sc) E = C 7→ (∆c ,Sc) Ξ; E ⊢ C

⊢ (C,D)
(T-Prog)

Effect Checking Ξ; E ⊢ C

(∆, _) = E(C) (Φ, _) = ∆(fi) E;C { f1, · · · ,fi−1 } ⊢ Φ

Ξ; E ⊢ class C(f̂ :T) { F M }

(T-Check)

Class Typing Ξ ⊢ C ! (∆,S)

Ξ;C ⊢ Fi ! (Φi ,Πi) ∆ = fi 7→ (Φi ,Πi) Ξ;C ⊢ Mi ! (Φi ,Πi) S =mi 7→ (Φi ,Πi)

Ξ ⊢ class C(f̂ :T) { F M } ! (∆,S)
(T-Class)

Field Typing Ξ;C ⊢ F ! (Φ,Π)

∅;C ⊢ e : D ! (Φ,Π)

Ξ;C ⊢ var f : D = e ! (Φ,Π)
(T-Field)

Method Typing Ξ;C ⊢ M ! (Φ,Π)

x :D;C ⊢ e : E ! (Φ,Π)

Ξ;C ⊢ def m(x :D) : E = e ! (Φ,Π)
(T-Method)

Fig. 7. Definition Typing

promote each potential in Π. For a method call effect C .this .m♢, we look up the effects associated

with the method from the effect table.

In potential propagation E ⊢ π ; Π, root potentials like C .this propagate to the empty set, as

they do not contain proxy aliasing information in the effect table. For a field potential likeC .this . f ,
propagation just looks up the potentials associated with the field f from the effect table. For a

method potentialC .this .m, propagation looks up the potentials associated with the methodm from

the effect table.

The soundness theorem says that a well-typed program does not get stuck at runtime.

Theorem 5.1 (Soundness). If ⊢ P, then ∀k . JPK (k) , Error

The meta-theory takes the approach of step-indexed definitional interpreters [Amin and Rompf

2017]. Initialization safety is implied by soundness, as initialization errors will cause the program

to fail at runtime. We refer the reader to the technical report for more details about the meta-theory

[Liu et al. 2020].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:23

Propagate Potentials E ⊢ π ; Π

E ⊢ β ; ∅

(∆, _) = E(C) (_,Π) = ∆(f)

E ⊢ C .this . f ; Π

(_,S) = E(C) (_,Π) = S(m)

E ⊢ C .this .m ; Π

E ⊢ C .this . f ; Π Π′ = [C .this 7→ warm[C]]Π

E ⊢ warm[C]. f ; Π′

E ⊢ C .this .m ; Π Π′ = [C .this 7→ warm[C]]Π

E ⊢ warm[C].m ; Π′

Propagate Effects E ⊢ ϕ ; Φ

E ⊢ β . f ! ; ∅

E ⊢ π ; Π

E ⊢ π↑; Π↑

(_,S) = E(C) (Φ, _) = S(m)

E ⊢ C .this .m♢; Φ

E ⊢ C .this .m♢; Φ Φ′ = [C .this 7→ warm[C]]Φ

E ⊢ warm[C].m♢; Φ′

Closure

Φ ⊆ Φ′ ∀ϕ ∈ Φ′.E ⊢ ϕ ; Φ′′ =⇒ Φ′′ ⊆ Φ′

Φc = Φ′

Check E;Ω;C ⊢ Φ

β↑< Φc ∀C .this . f ! ∈ Φc . f ∈ Ω

E;CΩ ⊢ Φ

Fig. 8. Effect Checking

6 IMPLEMENTATION
Based on the type-and-effect inference system, we have implemented an initialization system for

Scala. The implementation is already integrated in the Scala 3 compiler [Odersky et al. 2013] and

available to Scala programmers via the compiler option -Ycheck-init.

The implementation supports inner classes, first-class functions, traits and properties. Instantia-

tion of inner classes is supported without any annotations, as the following example shows:

1 class Trees {

2 private var counter = 0

3 class ValDef { counter += 1 } // ok, counter is initialized

4 class EmptyValDef extends ValDef

5 val theEmptyValDef = new EmptyValDef

6 }

To make the example above work, a warm potential in the system takes the formwarm(C, π),
where C is the concrete class of the object and π is the potential for the immediate outer of C . The

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:24 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

current version of the system only allows creating cyclic data structures via inner classes; passing

this as an argument to new-expressions is disallowed. To support the usage would require adding

an annotation to the language, which involves the language improvement process, which we want

to avoid in the initial version. We plan to support this in the next version following the solution

outlined in the theory (Section 5).

To support first-class functions, we introduce the potential Fun(Φ,Π), where Φ is the set of

effects to be triggered when the function is called, while Π is the set of potentials for the result of

the function call. For example, this enables the following code, which is rejected in Swift:

1 class Rec {

2 val even = (n: Int) => n == 0 || odd(n - 1)

3 val odd = (n: Int) => n == 1 || even(n - 1)

4 val flag: Boolean = odd(6)

5 }

In functional programming, the recursive binding construct letrec may introduce similar initial-

ization patterns as the code above. With the latest checker [Reynaud et al. 2018], OCaml still does

not support the code below in the construct let rec:

1 let rec even n = if n = 0 then true else odd (x - 1)

2 and odd n = if n = 0 then false else even (x - 1)

3 and flag = odd 3

Naive extension of the type-and-effect system can easily lead to non-termination of effect

checking in practice. This can be demonstrated by the following example:

1 class B {

2 class C extends B

3 val c: C = new C

4 }

The code above involves an infinite sequence of constructor call effects of the form πi .init(C),
where π0 = warm(C, this) and πi = warm(C, πi−1). To prevent infinite regression, we bound the

depth of nested potentials. When the bound is exceeded, we over-approximate the nested potentials

that exceed the bound with the potential cold.
One advantage of the type-and-effect system is that it integrates well with the compiler without

changing the core type system. In contrast, integrating a type-based system in the compiler poses

an engineering challenge, as the following example demonstrates:

1 class Knot {

2 val self: Knot @cold = this

3 }

In the code above, the type of the field self depends on when we ask for its type. If it is queried

during the initialization of the object, then it has the type Knot @cold. Otherwise, it has the type

Knot. We do not see a principled way to implement the type-based solution in the Scala 3 compiler.

7 EVALUATION
We evaluate the implementation on a significant number of real-world projects, with zero changes

to the source code. The results of the experiment are shown in Figure 9. The first three columns

show the size of the projects and warnings reported for each project:

• KLOC - the number of lines of code (KLOC) in the project checked by the system

• W/K - the number of warnings issued by the system per KLOC

• W - the number of warnings issued by the system

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:25

Fig. 9. Experiment result. The column W/K is the number of warnings per KLOC, and the column W is the
number of warnings issued for the corresponding project. Other columns are explained in the text.

Project KLOC W/K W X1 X2 X3 X4 A B C D E F G H

dotty 106.0 0.73 77 742 447 146 350 7 16 2 32 0 3 4 13

intent 1.8 39.53 71 10 290 0 1 0 0 0 71 0 0 0 0

algebra 1.3 4.70 6 1 6 0 0 0 0 0 0 0 0 6 0

stdLib213 43.6 0.62 27 231 104 8 99 14 0 4 2 0 1 6 0

scalacheck 5.5 1.08 6 39 70 6 83 0 0 0 6 0 0 0 0

scalatest 378.9 0.39 149 1037 718 18 664 0 0 8 114 0 8 19 0

scalaXml 6.8 0.15 1 36 13 0 0 0 0 0 0 0 0 1 0

scopt 0.3 0.00 0 6 4 0 0 0 0 0 0 0 0 0 0

scalap 2.2 5.43 12 62 57 2 108 0 0 0 7 5 0 0 0

sqants 14.1 0.00 0 9 0 0 0 0 0 0 0 0 0 0 0

betterfiles 2.8 0.00 0 17 1 0 0 0 0 0 0 0 0 0 0

ScalaPB 16.2 0.31 5 28 10 0 6 4 0 0 1 0 0 0 0

shapeless 2.5 0.79 2 5 0 0 0 0 0 0 0 2 0 0 0

effpi 5.7 0.53 3 15 5 0 12 0 0 0 3 0 0 0 0

sconfig 21.8 0.60 13 70 43 0 8 13 2 2 0 0 1 6 2

munit 2.7 1.13 3 32 73 1 13 0 0 0 2 0 0 0 1

SUM 612.1 0.61 375 2340 1841 181 1344 38 18 16 238 7 13 42 16

We can see that for over 0.6 million lines of code, the system reports 375 warnings in total and

the average is 0.61 warnings per KLOC. We can better interpret the data in conjunction with the

following columns:

• X1 - the number of field accesses on this during initialization

• X2 - the number of method calls on this during initialization

• X3 - the number of field accesses on warm objects during initialization

• X4 - the number of method calls on warm objects during initialization

The data for the columns above are censused by the initialization checker, one per source location.

Without type-and-effect inference, the system would have to issue one warning for each method

call on this and warm objects
2
, i.e., the counts in columns X2 and X4 would all become warnings.

This would contribute more than 3000 warnings, an 8-fold increase in the number of warnings.

We manually analyzed all the warnings and classified them into 8 categories:

• A - Use this as constructor arguments, e.g. new C(this)

• B - Use this as method arguments, e.g. call(this)

• C - Use inner class instance as constructor arguments, e.g. new C(innerObj)

• D - Use inner class instance as method arguments, e.g. call(innerObj)

• E - Use uninitialized fields as by-name arguments

• F - Access non-initialized fields

• G - Call external Java or Scala 2 methods

• H - others

The warnings in category A and C are related to the creation of cyclic data structures. From

Section 5, we know that such code patterns can be supported by declaring a class parameter to be

cold. The current implementation does not support any annotations yet, but we plan to introduce

explicit annotations in the next version of the system.

2
If we ignore the fact that non-private field accesses are also method calls in Scala.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

175:26 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

Most of the warnings lie in the category D, which refers to cases like the following:

1 object Foo {

2 case class Student(name: String, age: Int)

3 call(Student("Jack", 30) // should be OK, currently a warning

4 }

For the code above, our system currently issues a warning, as it only knows that the object

created by Student("Jack", 20) is warm, while method arguments are required to be hot. Checking

whether an inner class instance may be safely promoted to hot or not can be expensive if the inner

class contains many fields and methods. However, these cases suggest that the system could be

improved for common use cases that only involve small classes, such as the example above.

The category E refers to cases like the following, which is not supported currently:

1 def foo(x: => Int) = new A(x)

2 class A(init: => Int)

3 class Foo {

4 val a: A = foo(b) // category E

5 val b: Int = 100

6 }

As an over-approximation, we expect the warnings in category F are all false positives. However,

to our delight, the system actually finds 8 true positives in ScalaTest, and one true positive in the

Scala standard library. It also discovers two bugs in the Scala 3 compiler. We reported the bugs, and

the bugs in the Scala 3 compiler have been fixed. The technical report contains more details about

the bugs [Liu et al. 2020].

The category G involves method calls on this in the constructor, but the target method is

compiled by Java or the Scala 2 compiler. The category H involves code that performs pattern

matching on this or calls methods on cold values.

8 RELATEDWORK
Our work takes inspiration from several milestone papers on the problem of initialization.

Fähndrich and Leino [2003] introduce raw types like T raw(S)
— a value of such a type is possibly

under initialization, and all fields up to the superclass S are initialized. Class fields may not hold

raw values, thus it does not support creating cyclic data structures. To overcome the limitation,

they introduce delayed types [Fähndrich and Xia 2007]. The system ensures that the initialization

of objects forms stacked time regions.

Qi and Myers [2009] introduce a flow-sensitive type-and-effect system for initialization based

on masked types. The system is expressive, however, it leaves open the problem of typestate

polymorphism and type-and-effect inference. Our work can be seen as an attempt to address the

problems.

Summers and Müller [2011] show that initialization of cyclic data structures can be supported

in a light-weight, flow-insensitive type system. The system cleverly uses subtyping to achieve

typestate polymorphism. However, it leaves open the design of a dataflow analysis that enables the

usage of already initialized fields. Our work effectively addresses the problem.

There is another main difference: our system favors perfect monotonicity, while the freedom
model favors strong monotonicity. There are design trade-offs in both approaches. In our case,

perfect monotonicity enables us to remove the abstraction unclassified and it is easy to safely use

already initialized fields in the constructor. In contrast, the freedom model enables assigning a free

object to the field of another free object anywhere, while in our system it is only possible in the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

A Type-and-Effect System for Object Initialization 175:27

constructor at initialization points. More concretely, the following example is supported by the

freedom model, but not by our system:

1 class A {

2 m(this)

3 var b: b = new B(this)

4 def m(a: A @free): Unit = { a.b = new B(a) } // !!

5 }

6 class B(a: A @free)

The assignment a.b = new B(a) in the method m will be rejected by our system, as new B(a) is a

value under initialization (it holds a reference to a free value a). In our system, it is only possible

to assign hot values to fields of cold objects, while in the freedom model it is possible to assign

non-committed values to fields of non-committed values. Our design is based on our experience

with Scala projects, where an object rarely escapes from its constructor and has its fields initialized

elsewhere. Summers and Müller [2011] have similar observations (Section 8.1).

The Checker Framework enables many useful checkers for various properties of Java programs

[Ernst and Ali 2010]. In particular, it implements and extends the freedom model. One major

extension is the introduction of the annotation UnknownInitialization, which is in the same spirit

as warm. A difference is that warm in our type-based model enjoys transitivity — a warm object

may in turn contain warm fields. The initialization model in Checker Framework does not enjoy

this kind of transitivity enabled by warm, despite the introduction of 4 annotations: Initialized,

UnderInitialization, UnknownInitialization and NotOnlyInitialized.

The initialization in X10 [Zibin et al. 2012] employs an inter-procedural analysis to ensure safe

initialization, which removes the annotation burden required when calling final or private methods

on this. However, the analysis algorithm is not presented in the paper. To call virtual methods on

this, annotations are required on method definitions.

The Billion-Dollar Fix [Servetto et al. 2013] introduces a new linguistic construct placeholders and
placeholder types to support initialization of circular data structures. The work is orthogonal to the

current work, in that we are constrained from introducing new language constructs and semantics.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of OOPSLA 2020 for their constructive comments. We thank

Clément Blaudeau for his work on mechanization of the theory in Coq. We gratefully acknowledge

funding by the Swiss National Science Foundation under Grant 200021_166154 (Effects as Implicit

Capabilities). This research was also supported by the Natural Sciences and Engineering Research

Council of Canada.

REFERENCES
Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe
Castagna and Andrew D. Gordon (Eds.). ACM, 666–679. http://dl.acm.org/citation.cfm?id=3009866

Joshua Bloch. 2008. Effective Java (2nd Edition) (The Java Series) (2 ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). 2013. Aliasing in Object-Oriented Programming. Types, Analysis and

Verification. Lecture Notes in Computer Science, Vol. 7850. Springer. https://doi.org/10.1007/978-3-642-36946-9

Joe Duffy. 2010. On partially-constructed objects. http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/.

Michael D. Ernst and Mahmood Ali. 2010. Building and using pluggable type systems. In Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010,
Gruia-Catalin Roman and André van der Hoek (Eds.). ACM, 375–376. https://doi.org/10.1145/1882291.1882356

Manuel Fähndrich and K. Rustan M. Leino. 2003. Declaring and checking non-null types in an object-oriented language. In

Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

http://dl.acm.org/citation.cfm?id=3009866
https://doi.org/10.1007/978-3-642-36946-9
http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/
https://doi.org/10.1145/1882291.1882356

175:28 Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo Giarrusso, Martin Odersky

OOPSLA 2003, October 26-30, 2003, Anaheim, CA, USA, Ron Crocker and Guy L. Steele Jr. (Eds.). ACM, 302–312. https:

//doi.org/10.1145/949305.949332

Manuel Fähndrich and K Rustan M Leino. 2003. Heap monotonic typestates. In International Workshop on Aliasing,
Confinement and Ownership in object-oriented programming (IWACO).

Manuel Fähndrich and Songtao Xia. 2007. Establishing object invariants with delayed types. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007,
October 21-25, 2007, Montreal, Quebec, Canada, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy

L. Steele Jr. (Eds.). ACM, 337–350. https://doi.org/10.1145/1297027.1297052

Joseph Gil and Tali Shragai. 2009. Are We Ready for a Safer Construction Environment?. In ECOOP 2009 - Object-Oriented
Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings (Lecture Notes in Computer Science,
Vol. 5653), Sophia Drossopoulou (Ed.). Springer, 495–519. https://doi.org/10.1007/978-3-642-03013-0_23

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2015. The Java Language Specification, Java SE 8

Edition.

John Hogg, Doug Lea, Alan Cameron Wills, Dennis de Champeaux, and Richard C. Holt. 1992. The Geneva convention on

the treatment of object aliasing. OOPS Messenger 3, 2 (1992), 11–16. https://doi.org/10.1145/130943.130947

Fengyun Liu, Ondrej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso, and Martin Odersky. 2020. Safe Initialization of Objects.

(2020), 141. http://infoscience.epfl.ch/record/279970

John M. Lucassen and David K. Gifford. 1988. Polymorphic Effect Systems. In Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988, Jeanne Ferrante and
P. Mager (Eds.). ACM Press, 47–57. https://doi.org/10.1145/73560.73564

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer. https://doi.org/10.

1007/978-3-662-03811-6

Martin Odersky et al. 2013. Dotty Compiler: A Next Generation Compiler for Scala. https://dotty.epfl.ch/.

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Xin Qi and Andrew C. Myers. 2009. Masked types for sound object initialization. In Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong
Shao and Benjamin C. Pierce (Eds.). ACM, 53–65. https://doi.org/10.1145/1480881.1480890

Alban Reynaud, Gabriel Scherer, and Jeremy Yallop. 2018. A right-to-left type system for mutually-recursive value definitions.

CoRR abs/1811.08134 (2018). arXiv:1811.08134 http://arxiv.org/abs/1811.08134

Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. 2013. The Billion-Dollar Fix - Safe Modular Circular

Initialisation with Placeholders and Placeholder Types. In ECOOP 2013 - Object-Oriented Programming - 27th European
Conference, Montpellier, France, July 1-5, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7920), Giuseppe Castagna
(Ed.). Springer, 205–229. https://doi.org/10.1007/978-3-642-39038-8_9

Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language Concept for Enhancing Software Reliability.

IEEE Trans. Software Eng. 12, 1 (1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929

Alexander J. Summers and Peter Müller. 2011. Freedom before commitment: a lightweight type system for object initialisation.

In Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, Cristina Videira Lopes and
Kathleen Fisher (Eds.). ACM, 1013–1032. https://doi.org/10.1145/2048066.2048142

Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay A. Saraswat. 2012. Object Initialization in X10. In ECOOP 2012 -
Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-16, 2012. Proceedings (Lecture Notes in
Computer Science, Vol. 7313), James Noble (Ed.). Springer, 207–231. https://doi.org/10.1007/978-3-642-31057-7_10

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 175. Publication date: November 2020.

https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/1297027.1297052
https://doi.org/10.1007/978-3-642-03013-0_23
https://doi.org/10.1145/130943.130947
http://infoscience.epfl.ch/record/279970
https://doi.org/10.1145/73560.73564
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://dotty.epfl.ch/
https://doi.org/10.1145/1480881.1480890
https://arxiv.org/abs/1811.08134
http://arxiv.org/abs/1811.08134
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1007/978-3-642-31057-7_10

	Abstract
	1 Introduction
	1.1 Theoretical Challenges
	1.2 Existing Work
	1.3 Contributions

	2 Local Reasoning about Initialization
	2.1 A Small Language
	2.2 Definitions
	2.3 Weak Monotonicity
	2.4 Stackability
	2.5 Scopability
	2.6 Local Reasoning about Initialization

	3 The Basic Model
	3.1 Types
	3.2 Type System
	3.3 Typestate Polymorphism
	3.4 The Discipline of Authority

	4 Type-and-Effect Inference, Informally
	4.1 Potentials and Effects
	4.2 Two-Phase Checking
	4.3 Full-Construction Analysis
	4.4 Cyclic Data Structures
	4.5 Relationship with the Type System

	5 Formalizing Type-and-Effect Inference
	5.1 Syntax and Semantics
	5.2 Effects and Potentials
	5.3 Expression Typing
	5.4 Definition Typing
	5.5 Effect Checking

	6 Implementation
	7 Evaluation
	8 Related Work
	Acknowledgments
	References

