
Initialization Patterns in Dotty
Fengyun Liu

Aggelos Biboudis
Martin Odersky

EFPL, Lausanne, Switzerland
first.last@epfl.ch

Abstract
Safe object initialization is important to avoid a category
of runtime errors in programming languages. In this paper,
we provide a case study of the initialization patterns on the
Dotty compiler. In particular, we find that calling dynamic-
dispatching methods, the usage of closures and instantiating
nested classes are important for initialization of Scala objects.
Based on the study, we conclude that existing proposals for
safe initialization are inadequate for Scala.

CCS Concepts • Software and its engineering → Ob-
ject oriented languages; Classes and objects;

Keywords Object initilization, Scala
ACM Reference Format:
Fengyun Liu, Aggelos Biboudis, and Martin Odersky. 2018. Ini-
tialization Patterns in Dotty. In Proceedings of the 9th ACM SIG-
PLAN International Scala Symposium (Scala ’18), September 28, 2018,
St. Louis, MO, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3241653.3241662

1 Introduction
Errors in object initialization, such as the usage of a field
before its initialization, can be difficult to spot. This can be
illustrated by the following code example:

trait Zen {

val name: String

val message = "hello, " + name

}

class Tao extends Zen {

val name = "Tao"

}

The code above may look correct, but the result is surprising
after running it:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Scala ’18, September 28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5836-1/18/09. . . $15.00
https://doi.org/10.1145/3241653.3241662

println((new Tao).message) // hello, null

We would expect the code to print “hello, Tao” instead! The
problem is that when the field message is getting initialized,
the field name in Tao is not yet initialized itself.

However, the following class, Nirvana, has no problem, as
the fields declared in the primary constructor are initialized
before the parent (i.e. Zen) is initialized.

class Nirvana(val name: String) extends Zen

println(new Nirvana("Nirvana")) // hello, Nirvana

There are several proposals for checking initialization
in object-oriented languages [Summers and Müller 2011;
Zibin et al. 2012], but none exists for Scala. Scala is a multi-
paradigm programming language that offers a wide range of
features, like traits and path-dependent types. Our ultimate
goal is to augment the Scala language specification to ensure
initialization safety.

For this purpose, we carry out a case study on Dotty, the
prospective Scala compiler [Odersky et al. 2013]. Dotty has
about 68KLOC. Given the complexity of Dotty, we assume it
covers most important initialization patterns found in Scala
programs.
We classify discovered initialization patterns into four

different groups, based on the information required to reason
about safe initialization:

• Category A: Intra-Class interaction
• Category B: Child-Parent interaction
• Category C: Inter-Class interaction
• Category D: Outer-Inner interaction

We find that calling dynamic-dispatching methods, the us-
age of closures and instantiating nested classes are important
for initialization of Scala objects.

2 Category A: Intra-Class Interaction
In this category, we classify all initializations that can be
reasoned locally, that is without the need to consider class
hierachy or other external classes.

2.1 A1: Access Local Fields
This is a common pattern, where an initialized field is used
to initialize other fields, as the following code shows 1:

object Flags {

1All the code comes from the Dotty compiler, however, they are adapted
for better presentation.

51

https://doi.org/10.1145/3241653.3241662
https://doi.org/10.1145/3241653.3241662
https://doi.org/10.1145/3241653.3241662

Scala ’18, September 28, 2018, St. Louis, MO, USA Fengyun Liu, Aggelos Biboudis, and Martin Odersky

private final val TERMindex = 0

private final val TERMS = 1 << TERMindex

}

The compiler should check that the field TERMindex is ini-
tialized before use.

2.2 A2: Call Local Methods
In this pattern, a local method is called during initialization.
In the following code, the local method nxId is called to
assign a unique ID for each instance of the Tree:

abstract class Tree[-T >: Untyped] {

private def nxId = {

Trees.nextId += 1

Trees.nextId

}

private var myUniqueId: Int = nxId

}

For safety, the compiler should check that calling the
method nxId will not accessing any non-initialized fields.

2.3 A3: Use Closures
Usage of closures during initialization is common. The usage
results not only from direct code but also from syntactic
desugaring, for-comprehensions are translated into method
calls with closures as parameters. The following code shows
that during initialization of objects of the class Lifter, a
closure which references the field thisPhase escapes via the
method call ctx.atPhase.

class Lifter(thisPhase: MiniPhase)(...ctx) {

ctx.atPhase(thisPhase) { implicit ctx =>

// ...

generateProxies()(ctx.withPhase(thisPhase.next))

liftLocals()(ctx.withPhase(thisPhase.next))

}

}

The compiler should be able to check whether a closure
accesses any non-initialized fields when it escapes to external
methods.

3 Category B: Child-Parent Interaction
In this category, we classify all initializations that need to
take inheritance and class hierachy into consideration.

3.1 B1: Call Deferred Methods
In this pattern, an abstract method may be called during
initialization, as the following code shows:

abstract class AbstractFile {

def name: String

val extension: String = Path.extension(name)

}

The compiler has to ensure that subclasses of AbstractFile
that implement the method name should not use, directly or

indirectly, any possibly non-initialized fields of the object
(declared in parent or child class).

3.2 B2: Access Deferred Fields
In this pattern, a deferred field is used during initialization
of a parent, as the following code shows:

abstract class NamedType {

val prefix: Type

assert(

prefix.isValueType || (prefix eq NoPrefix)

s"invalid prefix $prefix"

)

}

In this case, the compiler has to make sure that the child
class initializes the field prefix before initializing the parent
NamedType.

3.3 B3: Call Overriden Methods
In this pattern, a parent may call a method that is overriden
in a child class, as the following code demonstrates:

class DottyUnpickler {

val a = treeSectionUnpickler(...)

def treeSectionUnpickler(...) = {

new TreeSectionUnpickler(...)

}

}

class TastyUnpickler extends DottyUnpickler {

override def treeSectionUnpickler(...) =

new QuotedTreeSectionUnpickler(...)

}

The compiler has to ensure that all overriding methods
of treeSectionUnpickler do not directly or indirectly use
any possibly non-initialized fields of the object (declared in
parent or child class).

3.4 B4: Access Parent Fields
In the following code example, the child class TreeBuffer

accesses the parent field bytes in TastyBuffer during initial-
ization:

class TastyBuffer(initialSize: Int) {

var bytes = new Array[Byte](initialSize)

}

class TreeBuffer extends TastyBuffer(50000) {

val initialOffsetSize = bytes.length / ...

}

While in most cases we may assume that parent fields are
fully initialized, for lazy fields and fields that refer to local
closures or objects of nested classes it is not the same case.
Thus, the compiler should be able to distinguish parent fields
that can be safely accessed from children from fields that
may cause initialization problems if accessed from children.

52

Initialization Patterns in Dotty Scala ’18, September 28, 2018, St. Louis, MO, USA

3.5 B5: Call Parent Methods
In the following code, the initialization of JavaTokens calls
the method enter defined in the parent class TokensCommon:

abstract class TokensCommon {

val tokenString = new Array[String](maxToken + 1)

def enter(token: Int, str: String) = {

tokenString(token) = str

}

}

object JavaTokens extends TokensCommon {

final val INSTANCEOF = 101

enter(INSTANCEOF, "instanceof")

}

Generally, accessing parent methods is unsafe, as theymay
call methods defined in some child class through dynamic
dispatch. The latter may access fields in child classes that
are not yet initialized. The compiler should be able to differ-
entiate methods that can be safely called while initializing a
child, from those that cannot be called.

4 Category C: Inter-Class Interaction
In this category, we classify all initializations that need to
take external classes into consideration.

4.1 C1: Escape of this to new

In the following code, this escapes to a new instance of
initialCtx:

class ContextBase {

val ictx = new InitialContext(this, ...)

}

class InitialContext(val base: ContextBase, ...)

As this is partially initialized, we must treat ictx as par-
tially initialized as well. It implies it is unsafe to access any
members of ictx that may indirectly access uninitialized
fields of the current object referred by this, both in the cur-
rent class or from child classes.

In the class InitialContext, the compiler must ensure that
during initialization it doesn’t directly or indirectly access
any fields on the parameter base.

4.2 C2: Call Methods on Escaped this

In the following example, this of TastyPickler escapes to the
class TreePickler, which in turn calls themethod newSection:

class TastyPickler(val rootCls: ClassSymbol) {

val sections = new mutable.ArrayBuffer[...]

def newSection(name: String, buf: TastyBuffer) =

sections += ...

val treePkl = new TreePickler(this)

}

class TreePickler(pickler: TastyPickler) {

val buf = new TreeBuffer

pickler.newSection("ASTs", buf)

}

To ensure safety, the compiler has to tell which meth-
ods are safe to call on pickler during the initialization of a
TreePickler object.

4.3 C3: Escape of this to Methods
These are hard cases of initialization. A typical example is
the initialization of RecType, in which this escapes via the
function parentExp:

class RecType(parentExp: RecType => Type) {

val parent = parentExp(this)

}

In Dotty, the types MethodType, HKTypeLambda and PolyType
also use the same pattern to decouple the initialization of
3-way cyclic data structures.

The following code is another example where this escapes
to a method:

class Run(...ictx: Context) {

def rootContext(implicit ctx: Context) = {

...

start.setRun(this)

}

var myCtx = rootContext(ictx)

}

To ensure safe initialization in the aforementioned exam-
ple, the compiler has to ensure that no uninitialized fields of
this are accessed directly or indirectly:

1. during the method call setRun
2. via usage of start during the initialization of this
3. via aliases to start (and this if it’s aliased in setRun)

during the initialization of this

The checking requirement is daunting. Given the infre-
quency and ad-hoc nature of this initialization pattern, we
think it is fine to make this pattern an exceptional case
through some escape like @unchecked.

4.4 C4: Escape of Fully Initialized this

In the following code example, this safely escapes as all
fields of the object are initialized:

final class RealProfiler(reporter: ProfileReporter)

{

...

reporter.header(this) // fields initialized above

}

Note it is important that the class RealProfiler is effec-
tively final, otherwise it is considered an unsafe escape, since
calling methods on this may reach child fields that are not
yet initialized.

53

Scala ’18, September 28, 2018, St. Louis, MO, USA Fengyun Liu, Aggelos Biboudis, and Martin Odersky

5 Category D: Outer-Inner Interaction
In this category, we classify all initializations related to
nested classes, which could be defined in parent class or
current class.

5.1 D1: Instantiation of Nested Class
The following code shows that an instance of the nested
class EmptyValDef is created during initialization:

object Trees {

class ValDef {

def setMods(x: Int) = ...

}

class EmptyValDef extends ValDef {

setMods(5)

}

val theEmptyValDef = new EmptyValDef

}

The compiler should check that the method setMods can
be safely called from EmptyValDef. It is not sufficient to check
that it only accesses fields that are initialized in ValDef. In
addition, the compiler has to ensure that setMods does not
directly or indirectly access non-initialized fields of the object
Trees.

5.2 D2: Instantiation of Nested Class in Parent
In the following example, an instance of the nested class
Info is created during the initialization of an object of the
class ClassifiedNameKind:

abstract class NameKind(...) {

class Info extends NameInfo { ... }

}

class ClassifiedNameKind extends NameKind(...) {

val info = new Info

}

There are several safety concerns here:
1. The initializer of Infomay access methods of the class

NameKind, which may indirectly access non-initialized
fields of ClassifiedNameKind through dynamic dispatch.

2. Calling methods on info in ClassifiedNameKind may
indirectly reach non-initialized fields.

3. Calling methods on info from child classes of the
class ClassifiedNameKind may indirectly reach non-
initialized fields of the child classes.

4. info should not be passed as a value of the type Info

to external methods, unless it is completely safe to call
any methods and access any fields on it.

5.3 D3: Call Methods on Instance of Nested Class
In the following example, we see that an instance of the
nested class FlagSet is created and assigned to JavaStatic,
then the method toTermFlags is called on JavaStatic:

object Flags {

case class FlagSet(val bits: Long) {

def toTermFlags =

if (bits == 0) this

else FlagSet(bits & ~KINDFLAGS | TERMS)

}

final val JavaStatic = FlagSet(31)

final val JavaStaticTerm = JavaStatic.toTermFlags

}

For safety, the compiler has to ensure that calling the
method toTermFlags on JavaStatic will not reach any non-
initialized fields of the object Flags.

6 Related Work
Masked types [Qi and Myers 2009] are expressive, but ver-
bose to use since it requires an involved manual annotation
process from the programmer. The verbosity motivated more
practical approaches [Summers and Müller 2011; Zibin et al.
2012].
X10 [Zibin et al. 2012] forbids leaking this out of the

constructor during object initialization [Gil and Shragai
2009]. Therefore, it is impossible to safely initialize cyclic
data structures with such a design. Dynamic dispatching is
only allowed when this is not accessed with the annotation
@NoThisAccess. X10 also prehibits creating an inner instance
when the outer this is under initialization.

On the contrary, Summers et al. [Summers and Müller
2011] supports leaking this during initialization, thus it sup-
ports safe initialization of cyclic data structures. The design
is simple, modular, sound and expressive. Types are used
for inter-class interactions, while intra-class interactions are
subject to data-flow analysis. However, dynamic dispatching
is not addressed sufficiently in the paper, for which we con-
jecture something like @NoThisAccess in X10 will be needed.
Inner classes is not discussed in the paper.

7 Future Work
We are prototyping a checker for Scala 2, which combines
ideas from [Zibin et al. 2012] and [Summers andMüller 2011].
The design includes a) a data-flow analysis for checking
intra-class and inner-outer interactions and b) type-based
checking for parent-child and inter-class interactions. We
are going to evaluate our prototype on real-world projects
and see how much changes are required to migrate existing
code.

Acknowledgments
We thank the anonymous reviewers for their constructive
comments. We gratefully acknowledge funding by the Swiss
National Science Foundation under Grant 200021_166154
(Effects as Implicit Capabilities).

2https://github.com/lampepfl/dotty/pull/4543

54

Initialization Patterns in Dotty Scala ’18, September 28, 2018, St. Louis, MO, USA

References
Joseph Yossi Gil and Tali Shragai. 2009. Are We Ready for a Safer Construc-

tion Environment?. In European Conference on Object-Oriented Program-
ming. Springer, 495–519.

Martin Odersky et al. 2013. Dotty Compiler: A Next Generation Compiler for
Scala. https://web.archive.org/web/20170325001401/http://dotty.epfl.ch/.

Xin Qi and Andrew C. Myers. 2009. Masked Types for Sound Object Ini-
tialization. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’09). ACM,
53–65.

Alexander J Summers and Peter Müller. 2011. Freedom before commitment:
a lightweight type system for object initialisation. In ACM SIGPLAN
Notices, Vol. 46. ACM, 1013–1032.

Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. 2012.
Object initialization in X10. In European Conference on Object-Oriented
Programming. Springer, 207–231.

55

https://web.archive.org/web/20170325001401/http://dotty.epfl.ch/

	Abstract
	1 Introduction
	2 Category A: Intra-Class Interaction
	2.1 A1: Access Local Fields
	2.2 A2: Call Local Methods
	2.3 A3: Use Closures

	3 Category B: Child-Parent Interaction
	3.1 B1: Call Deferred Methods
	3.2 B2: Access Deferred Fields
	3.3 B3: Call Overriden Methods
	3.4 B4: Access Parent Fields
	3.5 B5: Call Parent Methods

	4 Category C: Inter-Class Interaction
	4.1 C1: Escape of this to new
	4.2 C2: Call Methods on Escaped this
	4.3 C3: Escape of this to Methods
	4.4 C4: Escape of Fully Initialized this

	5 Category D: Outer-Inner Interaction
	5.1 D1: Instantiation of Nested Class
	5.2 D2: Instantiation of Nested Class in Parent
	5.3 D3: Call Methods on Instance of Nested Class

	6 Related Work
	7 Future Work
	Acknowledgments
	References

