
Forsaking Inheritance: Supercharged Delegation in DelphJ

Prodromos Gerakios Aggelos Biboudis Yannis Smaragdakis
Department of Informatics

University of Athens, 15784, Greece
{pgerakios,biboudis,smaragd}@di.uoa.gr

Abstract
We propose DelphJ: a Java-based OO language that eschews
inheritance completely, in favor of a combination of class
morphing and (deep) delegation. Compared to past delega-
tion approaches, the novel aspect of our design is the abil-
ity to emulate the best aspects of inheritance while retaining
maximum flexibility: using morphing, a class can select any
of the methods of its delegatee and export them (if desired)
or transform them (e.g., to add extra arguments or modify
type signatures), yet without needing to name these meth-
ods explicitly and handle them one-by-one. Compared to
past work on morphing, our approach adopts and adapts ad-
vanced delegation mechanisms, in order to add late binding
capabilities and, thus, provide a full substitute of inheritance.
Additionally, we explore complex semantic issues in the in-
teraction of delegation with late binding. We present our lan-
guage design both informally, with numerous examples, and
formally in a core calculus.

Categories and Subject Descriptors D.1.2 [Program-
ming Techniques]: Automatic Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features;
D.2.13 [Software Engineering]: Reusable Software

General Terms Languages

Keywords meta-programming; language extensions; mor-
phing; object composition; delegation; static reflection

1. Introduction
Inheritance is the major feature that Object-Oriented lan-
guage designers love to hate. It is the main mechanism for
code reuse in most OO languages: a class C inheriting from
another class S means that C can simultaneously both see

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright © 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509535

all the members of S and export them to the outside world
(filtered by preset access policies). At the same time, inheri-
tance has often been criticized in the research literature (e.g.,
[5, 6]), and specialty press (e.g., [9]). Briefly:

• Inheritance confuses the role of a class as a model for
object behavior and its role as an organizational unit
of code. When C wants to reuse code from S it does
not necessarily need to play the role of S to the out-
side world. The result is either chaotic automatic reuse
of members or limiting the ability to reuse code. Lan-
guages such as C++ distinguish “inheritance for code
reuse” (or plain subclassing) and “inheritance for subtyp-
ing” (or subclassing combined with subtyping). Multiple
style guides for C++ programming explicitly warn pro-
grammers to always use “inheritance for subtyping”. It
is one of the main OO principles (effectively a corollary
of the Liskov substitutability principle) that inheritance
without subtyping is brittle, low-level, and generally dan-
gerous. Accordingly, languages like Java only support in-
heritance for subtyping, from the perspective of the type
system. Of course, no type system can ensure that pro-
grammers define proper subtypes, in a behavioral sense.
OO programmers are taught to never reuse code for con-
venience when the subclass is not truly usable wherever
the superclass is (i.e., when the subclass is not a true sub-
type).

• Inheritance is a coarse-grained mechanism for code
reuse: C may need to reuse only a subset of the members
of S, yet is forced to inherit all of them. This aspect of
inheritance also exhibits itself as an annoying resistance
to composition. If inheritance is primarily a code reuse
mechanism, it seems that the first requirement would be
for the ability to reuse code from multiple places. Never-
theless, multiple inheritance is a standard thorny feature
of OO languages: naming conflicts, constructor ambigui-
ties, and inadvertent double-state problems arise. Modern
OO languages such as Java, C#, and Scala have explicitly
abandoned multiple inheritance.

• Inheritance is rigid: in its base form, the relationship
between a class and its superclass is determined at the
time of writing the code for the subclass. Mechanisms

such as mixins and traits [3, 6, 28] attempt to remedy this
shortcoming by adding much needed flexibility.

The mechanism of method delegation is often used as a
more disciplined substitute of inheritance: the programmer
explicitly creates a reference to a delegatee object and meth-
ods that forward their arguments to the appropriate method
of the delegatee object. In this way, the programmer is in full
control of the code reuse mechanisms, circumventing many
of the surprising aspects of (single or multiple) inheritance.
Nevertheless, delegation is a primitive mechanism, afford-
ing none of the convenience and automatic code reuse of in-
heritance. More advanced delegation mechanisms have been
proposed [19, 26] but either suffer from the coarse-grained
reuse problem of inheritance or do not support automatic
reuse of code without naming reused members explicitly.

In past work we have proposed the idea of class morphing
[10–12], which provides a glimpse at a possible full substi-
tute of inheritance. Morphing is a programming construct
that allows a program class or module to have non-fixed
contents. E.g., instead of a class declaring a specific set of
methods, it may declare that its methods match one-to-one
(with appropriate changes based on a fixed pattern) those of
another class. For instance, a morphed class Listify may
statically iterate over all the methods of another class, Subj,
pick those that have a single argument, and offer isomor-
phic methods: whenever Subj has a method with argument
A, Listify accepts a List<A>. (The implementation of ev-
ery method in Listify can then, e.g., iterate over all list
elements, and manipulate them using Subj’s methods.) The
MorphJ programming language is an extension of Java that
serves as the reference embodiment of morphing principles.
The described Listify functionality in MorphJ is shown
below:

1 class Listify {
2 Subj ref;
3 Listify(Subj s) {ref = s;}
4

5 <R,A>[m] for (public R m(A): Subj.methods)
6 public R m (List<A> a) {
7 ... /* e.g., call m for all elements */
8 }
9 }

Everything but line 5 looks like plain Java code, but it is
line 5 that determines what lines 6-8 really mean. Lines 5-8
form a reflective declaration block: line 5 defines the range
of elements being iterated over; lines 6-8 are the method
being declared once for each element in the iteration range.
The iteration happens statically. Line 5 says that we want
to iterate over all methods of Subj that match the pattern
“public R m (A)”, where R, A, and m are pattern variables
(declared before the keyword for). R and A are pattern type
variables, where R and A match any type except void; m
is a name variable, and matches any identifier. Thus, this
block iterates over all public methods of Subj that take
one argument of any type and have non-void returns. For

each such method, lines 6-8 declare a method with the same
return type, name, and argument types equal to a list of the
original argument type.

Morphing can be used to transform delegation into a
mechanism that is as transparent and convenient as inher-
itance, without sacrificing programmer control. A client
class, C, may want to transparently support all methods from
class S and also supply methods foo and bar. The straight-
forward way to do this is to just use a static iteration over S’s
methods and give implementations for foo and bar:

1 class C {
2 S ref;
3 C(S s){ref = s;} // to initialize ref
4

5 <R,A*>[m] for (public R m(A) : S.methods)
6 public R m (A a) {
7 ...
8 return ref.m(a);
9 }

10 void foo(...) {...} // anything
11 void bar(...) {...}
12 }

(We use a new primitive in this example: the star after
type parameter A means that it can match any number of
arguments.)

Morphing-plus-delegation still does not equal inheri-
tance, however! The problem is that the above combination
does not support the late binding properties of inheritance.
What if a method from S was also defined in C, i.e., if S
defined (and used) methods foo or bar? In an inheritance
setting, the method is overridden: method calls inside S are
late-bound, so that they may dispatch to methods in C in-
stead. Importantly, this can be performed in already com-
piled code. Yet no such late binding occurs when morphed
class C uses S as a mere external client.

The facility of late binding is essential in the context of
morphing. As a result, it requires us to introduce the concept
of a strong bond between a morphed class and its delegatee.
We use a special keyword, subobject, to signify such a
bond. As we show, this is similar to past work on delegation
mechanisms [19], yet with the subtlety that morphing allows
strong bonds between objects and their subobjects without
any obligation for automatically inheriting code or exporting
members to clients—any automation desired can be selec-
tively introduced by the programmer using a static iteration
(a morphing for loop) instead of implicitly.

The result of this work is a Java-like language design that
presents a full substitute of inheritance through delegation
and morphing. At the same time, the inflexibility, coarse-
granularity, etc. problems of inheritance are addressed di-
rectly. The contributions of our work are as follows:

• We show mechanisms that address the traditional prob-
lems of inheritance without sacrificing automation. Com-
pared to past work on delegation mechanisms, we dis-
sociate the concept of late binding from the concept of
reusing members of a delegatee, resulting in a clean sep-

aration with many flexibility mechanisms. Compared to
past work on morphing mechanisms, we add the essential
capability of late binding, which allows delegation to be
a full substitute of inheritance.

• Our language, DelphJ,1 supports a unique combination
of features yielding great power: subtyping (i.e., interface
conformance and dynamic substitutability of subtype ob-
jects for supertype objects) but not inheritance; delega-
tion with late binding; programmer control over all reuse
without sacrificing automation; and modular type check-
ing in the case of generic classes.

• We present our design both through informal examples
(which elucidate some of the difficulties of late binding
for delegation—e.g., versions of the fragile base class
problem) and through a formal model based on Feather-
weight GJ (which makes our design decisions fully pre-
cise).

In the rest of the paper, we present our language design
informally, via examples (Section 2), discuss the deep issues
concerning the addition of delegation (Section 3), detail a
formalism that captures the essence of our approach (Sec-
tion 4), compare to related work (Section 5), and conclude
(Section 6).

2. Morphing and Late Binding
Class-based inheritance provided by popular languages such
as Java is often not flexible enough to support agile behav-
ior sharing mechanisms between objects and to represent
dynamic object evolution. It can also introduce problems
that arise either accidentally, as in the case of the accidental
method overriding problem, or due to poor design decisions
and documentation, as in the case of the fragile base class
problem [24] or the circle-ellipse problem [16].

Our work avoids inheritance-related shortcomings, by
eliminating class-based inheritance in favor of a more flex-
ible model, where code reuse is separated from subtyping:
conformance to an externally visible interface is completely
dissociated from the ability to reuse implementations. In this
section, we show the design of our language, DelphJ, via in-
formal examples. These will show how object composition
via delegation, late binding, interface subtyping and mor-
phing can be combined. The presentation emphasizes the
points of difference between DelphJ and Java. That is, for
features not mentioned it is typically safe to assume that they
are handled as in Java.

Example 1 (Consultation). The combination of morph-
ing ideas with traditional delegation in mainstream OO lan-
guages can express a pattern often called consultation or for-
warding [19, 21]. In DelphJ, consultation is expressed (and

1 DelphJ is just MorphJ augmented with delegation features (and eliminat-
ing inheritance), as described in this paper. In all ways not relating to dele-
gation (esp. morphing features) the languages are identical.

has been since the original MorphJ work) via static-for loops
as shown in the class below that logs method invocations be-
fore performing them:

1 class Logger {
2 Subj ref;
3 Logger(Subj s) {ref = s;} // initialize
4

5 <R,A*>[m] for (public R m(A) : Subj.methods)
6 public R m (A a) {
7 System.out.println("method " + m.name +
8 " called with arg " + a);
9 return ref.m(a);

10 }
11 }

In this example, a client of Logger calls methods that are
eventually forwarded to Subj.

Consultation is an automatic mechanism to forward
method calls and morphing allows its flexible use. We do not
sacrifice automation (since a single static-for use can imple-
ment forwarding for any number of methods) yet the user
also has complete control over which method calls get for-
warded (via the pattern employed in the static-for). This is in
contrast to past language constructs for consultation, where
automatic forwarding applied indiscriminately to all meth-
ods.

Example 2 (Late binding). As already mentioned in the
Introduction, consultation is not always the mechanism one
may want to employ, because it lacks late binding capabili-
ties. In our Logger example, if class Subj has two methods
foo and bar, such that foo invokes bar, both methods will
be logged, but the call of bar inside foo will not.

The addition of a late binding facility is a major one in the
DelphJ language and has significant implications, as we also
discuss in detail in Section 3. Automatic mechanisms for for-
warding method calls together with late binding are often
called just delegation [22] in the research literature, but we
will use the term deep delegation to avoid confusion with ex-
isting mainstream facilities. Deep delegation consists of the
automatic method call forwarding from a child to a parent
object, when the self reference is bound to the method re-
ceiver (the child). Consultation, on the other hand, is also an
automatic method forwarding mechanism, however self is
bound to the method holder (the parent). Informally speak-
ing, deep delegation can emulate inheritance, while consul-
tation is merely an automation mechanism.

Our late-binding facility applies on a per-field basis. We
introduce a new modifier, subobject, to indicate fields with
implicit support for late binding. Our earlier Logger class
only needs to declare that its ref field refers to a subobject.

1 class Logger {
2 subobject Subj ref;
3 ... // as before
4 }

Methods of Subj are overridden if they are designated as
public and not final, and are also declared in the Logger

class. Therefore, Logger can now properly intercept and

log all public method invocations, including those internal
to Subj.

The following example illustrates a multilevel wrapper
case. More specifically, we have two levels of wrappers, but
this can be generalized to any number of levels.

1 class Wrapper1 {
2 subobject Subj ref = ...
3

4 <R,A*>[m]
5 for (public R m(A): Subj.methods)
6 public R m (A a) {
7 ...
8 return ref.m(a);
9 }

10 }
11 class Wrapper2 {
12 subobject Wrapper1 ref = ...
13

14 <R,A*>[m]
15 for (public R m(A):Wrapper1.methods)
16 public R m (A b) {
17 ...
18 return ref.m(b);
19 }
20 }

Assuming that we invoke a method on an instance of
Wrapper2, ref.m(b) will be called, which in turn calls
ref.m(a) within the body of the first wrapper. Eventually,
the actual implementation of method m will be invoked. The
object path through which the actual implementation of m
is reached is termed access path and has a crucial role in
DelphJ. In the example above, the path that m(b) (inside
Subj) is accessed from is Wrapper2 → Wrapper1 →
Subj (in a simplified form, showing only the types of each
object on the path) . The dynamic dispatch algorithm utilizes
the access path in order to locate the appropriate method to
dispatch to. Intuitively, when an object o is accessed through
subobject fields, the reference to o is not merely a pointer
to it, but the full list of object pointers and subobject field
identifiers that has led to o. Section 3 discusses in more detail
the access path and how it is formed during execution.

Deep delegation and subclassing discussion. Several lan-
guage and software designers have criticized the use of
inheritance and have instead promoted delegation, which,
however, lacks much of the inheritance convenience—
delegated methods need to be explicitly named one-by-one,
resulting in brittleness and verbosity. At the opposite end,
past mechanisms for deep delegation support both late bind-
ing and automatic forwarding of method calls using a single
keyword (e.g., delegatee [19, 21]).

In DelphJ we dissociate the two concepts completely. Our
subobject annotation does not imply any automatic for-
warding of method calls to the subobject reference. Instead,
the user of the mechanism is responsible for establishing
forwarding as desired using morphing capabilities. This ap-
proach achieves automation—e.g., it reduces the impact of
the fragile base class problem, as modifications to a “base”
class are automatically propagated to the “child” classes via

morphing. At the same time it gives the programmer full
control over which method calls will be forwarded.

Example 3 (Multiple parents). Delegation can be com-
bined with late binding in DelphJ to emulate multiple in-
heritance, but without any loss of control. As a standard ex-
ample of multiple code reuse, the following GradStudent

class has subobjects of type both Employee and Student,
thus reusing the functionality of both.

1 class GradStudent {
2 subobject Student sref;
3 subobject Employee eref;
4

5 GradStudent(Student s, Employee e)
6 { sref = s; eref = e; } // initialize
7

8 <R,A*>[m]
9 for (public R m(A): Student.methods;

10 no R m(A): Employee.methods)
11 public R m (A a) { ... }
12 // handle methods only in Student
13

14 <R,A*>[m]
15 for (public R m(A): Employee.methods;
16 no R m(A): Student.methods)
17 public R m (A a) { ... }
18 // handle methods only in Employee
19

20 <R,A*>[m]
21 for (public R m(A): Employee.methods;
22 some public R m(A): Student.methods)
23 public R m (A a) { ... }
24 // handle methods in both
25 }

The example defines three static-for loops. The first in-
cludes methods from Student but not Employee, the sec-
ond does the converse, and the third includes methods com-
mon to both. The listing showcases an important feature of
DelphJ (inherited transparently from MorphJ [10]): nested
patterns (via the no and some keywords). We use them
above to select methods from one subobject that are/are not
present in the other. The DelphJ type system ensures that
the reflective blocks produce non-conflicting methods, i.e.,
the user receives a type error if overlapping cases exist. (In-
tuitively, conflicts are detected in two steps: first by trying
to unify the pattern describing methods generated by each
static-for loop, and, second, by checking whether the pri-
mary and nested patterns are enough to ensure that seem-
ingly conflicting methods will never have the same name or
argument types.)

We, thus, see that morphing ensures convenient code
reuse but without relinquishing control over method for-
warding. Also, although our examples focus on meth-
ods, the same handling applies to fields (e.g., the code
could specify a pattern over Student.fields instead of
Student.methods).

Example 4 (Dynamic object evolution). A common issue
with class-based inheritance is that it fails to capture dy-
namic object evolution. For instance, it is not possible to

change the functionality of base classes at run-time (hot-
swapping) [23]. DelphJ permits dynamic delegation [20],
where subobject fields may be safely mutated without
having to re-compile the original code. This feature also
raises semantic complexities, which we defer discussing un-
til Section 3. The example below modifies the subobject

field, ref, dynamically. Method Window.draw overrides
the draw method of its Rendering subobject. The invoca-
tion of w.setWidget alters the behavior of object w dynam-
ically and from this point on the draw implementation of
SmoothDrawing is used.

1 interface Rendering {
2 public void draw();
3 }
4

5 class Window {
6 subobject Rendering ref = new DefaultRenderer();
7

8 public void draw() { return ref.draw();}
9

10 void setWidget(Rendering newRef)
11 { ref = newRef; }
12 }
13 ...
14 Window w = new Window();
15 w.draw(); //Dispatching to ref’s draw.
16 w.setWidget(new SmoothDrawing());
17 w.draw(); //Altered behavior.
18 ...

Example 5 (Subtyping). Our language design eliminates
inheritance and subclassing, but fully supports subtyping.
This is effected through interfaces. DelphJ supports nominal
subtyping and a class/interface can be a subtype of multiple
interfaces. As in Java, interfaces are organized hierarchically
and conformance of a class to an interface is designated by
the keyword implements. An object of class C implement-
ing an interface I can be used where a value of type I is
expected, satisfying the Liskov substitution principle. Inter-
faces can also be used as types of subobject fields.

Since we have dissociated reuse of code from subtyp-
ing, there is no requirement that method signatures of
subobject fields of C also exist in the interface imple-
mented by C, but the programmer can easily effect this if
desired by using a static-for construct. In the example be-
low, the interface, I, of the subobject of type Subj is also
supported by the Wrapper class, and even extended with ex-
tra members (which are in interface IPlus). Class Wrapper
showcases that a) a class can use a pattern to delegate to
some methods of a subobject; b) a class can override other
methods of the subobject with explicit definitions; c) a class
can provide extra methods, thus extending its interface.

1 interface I {
2 void foo();
3 void bar();
4 void baz();
5 }
6 interface IBasic {
7 void foo();

8 }
9 interface IPlus extends I {

10 void foobaz();
11 }
12 class Subj implements I {...}
13

14 class Wrapper implements IPlus {
15 subobject Subj ref;
16 Wrapper(Subj s) {ref = s;} // initialize
17

18 <R,A*>[m] for (public R m(A) : I.methods;
19 no R m(A) : IBasic.methods)
20 public R m (A a) { return ref.m(a) }
21 // delegate methods in Subj but not in IBasic
22

23 void foo() {...} // handle the IBasic method
24 void foobaz() {...} // handle any extra methods
25 }

Example 6 (Generics and modular type safety). All our
examples so far contained known types. Static-for loops
were thus merely a syntactic convenience. The hallmark fea-
ture of morphing is that the same capabilities exist even over
type parameters. That is, we can define generic classes that
take other types as yet-to-be-determined parameters. Our ex-
amples would all work even when the types involved (e.g.,
the type Subj of the subobject reference) were unknown.
For instance, our earlier Logger class would most likely be
written in a fully generic form:

1 class Logger<X> {
2 X ref;
3 Logger(X x) {ref = x;} // initialize
4

5 <R,A*>[m] for (public R m(A) : X.methods)
6 public R m (A a) {
7 System.out.println("method " + m.name +
8 " called with arg " + a);
9 return ref.m(a);

10 }
11 }

The ability to have generic types offers great power in
DelphJ. For instance, we can define as a single, reusable
generic type a static computation yielding the public inter-
face of any class:

1 interface PublicInterface<X> {
2 <R,A*>[m] for (public R m(A) : X.methods)
3 public R m (A);
4 }

For any class C, PublicInterface<C> yields a new
interface containing C’s public members.

The interesting feature of DelphJ (and MorphJ before it)
with respect to generics is that it maintains modular type
safety. This means that a generic class is type-checked once-
and-for-all and, if it passes type-checking, it will yield type-
safe code for any type parameter passed to it that respects the
stated obligations of type parameters. For instance, in our
earlier generic Logger<X> class, the type system verifies
that the call ref.m(a) is always possible, regardless of the
type of ref, i.e., regardless of what X has been passed as
a type parameter. In cases of complex patterns and mixes

of pattern-based and hand-coded methods, this capability is
invaluable for the debugging of generic code.

An even more interesting example comes from general-
izing our earlier scenario of a class that has two subobjects
(“multiple parents”) and overrides methods from either of
them using different strategies. The generic class below cap-
tures such a general skeleton. For convenience, it first defines
a generic interface that computes the difference of the inter-
faces of two given types. It then (for the sake of the example)
just dispatches to the unique methods of either subobject and
uses a filter to decide how to handle common methods.

1 interface SetMinus<X,Y> {
2 <R,A*>[m] for (public R m(A) : X.methods;
3 no R m(A) : Y.methods)
4 public R m (A);
5 }
6

7 class C<X,Y> {
8 subobject X parent1 = ...
9 subobject Y parent2 = ...

10

11 <R,A*>[m]
12 for (public R m(A): // only in X
13 SetMinus<X,Y>.methods)
14 public R m (A a) { return parent1.m(a);}
15

16 <R,A*>[m]
17 for (public R m(A): // only in Y
18 SetMinus<Y,X>.methods)
19 public R m (A a) { return parent2.m(a);}
20

21 <R,A*>[m]
22 for (public R m(A): X.methods;
23 some public R m(A): Y.methods)
24 public R m (A a) {
25 return Coin.flip()?parent1.m(a):parent2.m(a);
26 }
27 }

This generic combination of functionality from two sub-
objects is still type checked modularly. The important check
here is for the non-conflicting definitions of methods. The
DelphJ type system ensures that declared methods do not
conflict (i.e., there are no duplicate definitions with the same
argument types), for any values of unknown type parameters
X and Y. The type system manages to do this by leveraging
the patterns (including nested patterns) in the above code.

Aspect-oriented features discussion. Morphing does not
just supercharge delegation but also captures many common
needs for aspect-oriented programming [18]. Using static-
for loops, we can define common behavior for a set of
methods. This behavior can play the role of before-advice,
after-advice, or around-advice [17]. However, the empha-
sis of morphing is on modular reasoning and modular type-
checking: as we saw in our last examples, the language is
designed in such a way that a morphed generic class can
be type-checked and its well-formedness can be ensured re-
gardless of the code it is applied to. In contrast, standard
aspect-oriented constructs offer no well-formedness guaran-
tees when the code they apply to is unknown. Some research

efforts in this direction have been made (e.g., [31]) though
not with a formally proven type system for generic aspects.

3. Subtleties of Delegation
The previous section showcased our overall programming
model, i.e., the use of morphing together with deep dele-
gation as a full substitute of inheritance and an overall ex-
pressive, modular mechanism. We next focus more deeply
on the subtleties of deep delegation and the relevant design
decisions in DelphJ.

Nominal subtyping via interfaces. Interfaces are orga-
nized in a hierarchy and serve two purposes: first, they act
as supertypes of classes, designated via the implements

clause; second, interfaces can be employed as subobject
field types to provide fine-grained method visibility and
overriding for objects stored in such fields.

Our overriding strategy is that a wrapper class can only
override non-final methods of a subobject field if the
methods are present in the static (i.e., declared) field type.
Since in DelphJ subtyping only occurs via interfaces, when
we use an interface as the static type of a subobject field,
we are limiting the potential for late binding to methods de-
fined in the interface (and not all methods in the object that
the subobject field currently references). This design de-
cision has the rationale that classes can be developed sepa-
rately from their subobject fields’ classes, and a wrapper
class should never be able to override a method it does not
know about.

This feature prevents accidental method overriding by
wrapper classes as in Figure 1. Let us assume that classes
Widget and ThirdParty have been independently devel-
oped and only method checkBounds should be overrid-
den, as indicated by IThirdParty. Widget obtains the
checkBounds functionality by delegating checkBounds

invocations to a ThirdParty object. Both Widget and
ThirdParty independently implement method checkRes,
thus Widget is unaware of the checkRes implementation
in ThirdParty. In this code, overriding the behavior of
ThirdParty.checkRes would result in a runtime excep-
tion.

Our policy of requiring that overridden methods in a
subobject be both non-final and declared in the static type
of the subobject field yields fine-grained control, for both
parties in the subobject relationship. The wrapper class can
control what it overrides, allowing for the possibility of non-
interfering, unknown subobject methods. The subobject’s
class can also prevent overriding of a method by declaring
it to be final: a method that is declared in a wrapper class,
but is not a non-final method of a subobject field type will
be ignored by the dynamic dispatch algorithm.

Access paths and late binding. The access path of an ob-
ject o is an important concept in our language design and is
defined as the ordered sequence of “subobjects” through

Figure 1 Accidental method overriding (avoided).

1 interface IThirdParty {
2 public void checkBounds();
3 }
4

5 class ThirdParty {
6 public void checkBounds(){
7 if(checkRes() > 1024)
8 throw new InvalidResolution();
9 else ...

10 }
11 public int checkRes() { ... }
12 }
13

14 class Widget {
15 subobject IThirdParty impl;
16 public Widget(IThirdParty i){ impl = i; }
17 public void checkBounds(){ impl.checkBounds(); }
18 public int checkRes() { return 2048; }
19 }
20

21 new Widget(new ThirdParty()).checkBounds();

which o is accessed. Intuitively, the access path is the path to
be searched to implement dynamic dispatch. A way of un-
derstanding access paths is to regard them as substitutes of
this: if (o1 →f1 . . . →fn on).m() is invoked, where o1 to
on is the access path, then method lookup within m and for
m itself will consider the entire path o1 to on for finding the
appropriate method. (The suffixes on the arrows in the above
representation identify the field of the object through which
the subobject is accessed, since its type matters for dispatch,
per our preceding discussion.) The intuition is that the most
recent version of m will be selected, which implies selecting
the left-most element of the path that overrides m.

A key point is that access paths do not pertain to objects
but to references. The same object can have multiple access
paths: one for each reference (a.k.a. alias) to the object. We
will use the following example to explicate the concept:

1 class Wrapper {
2 subobject Subj ref;
3 Wrapper (Subj s) { ref = s; }
4 ...
5 }
6

7 Subj subj = new Subj(); // object s1
8 Wrapper w1 = new Wrapper(subj); // object o1
9 Wrapper w2 = new Wrapper(subj); // object o2

10 Subj alias = w2.ref;

The example gives names (s1, o1, o2) to the three dis-
tinct objects created. Objects o1 and o2 share s1 as a sub-
object. This means that the value of reference w1.ref is not
just a pointer to s1 (as would typically be in Java) but a
representation of the access path (o1 →ref s1). Similarly,
the value of reference w2.ref is (o2 →ref s1) and not
just s1. Additionally, the two references subj and alias

are not equivalent, although they refer to the same object
(s1), because they evaluate to different access paths. (In the

case of subj the access path is trivial, i.e., contains a single
member—subj is a direct reference to object s1, just like in
Java.) Thus, the dynamic dispatch behavior is different for
methods invoked via alias compared to methods invoked
via subj.

Fundamentally, the reason that references hold access
paths, and not merely object pointers, in our language de-
sign is that our objects do not own their subobjects, unlike in
a language with inheritance. The concept of a subobject also
exists in inheritance-based languages—the term is especially
common for languages with multiple inheritance: an object
of class C with superclasses S and T is said to contain S and T
subobjects. However, an object in an inheritance-based lan-
guage owns its superclass subobject. That is, every object of
class C can be thought of as having a unique, non-aliasable
reference to a full object of C’s superclass. (This also pre-
vents circular references. In our language model it is the re-
sponsibility of the programmer to avoid circular references,
or a run-time error ensues.) At the implementation level, this
ownership typically translates into embedding the superclass
subobject inside the object. In our design, however, since
subobjects can be aliased, they need a per-alias record of
how they are accessed, in order to implement dynamic dis-
patch properly. (In other delegation-based approaches [20],
object access through a subobject field does not evaluate
to the entire access path but to a single reference to the ob-
ject, limiting the generality of dynamic dispatch.)

Our references can be passed around as arguments or re-
turn values, stored in local variables, etc. The only seman-
tic question arising is how access paths are built. The gen-
eral syntax of a field access (object field read) is “obj =

obj2.fld”. If obj2 already encodes a non-trivial access
path, then this path is augmented with the (pointer) value of
field fld and the resulting access path is the value of obj.
This can be viewed as merging access paths. That is, if we
view field fld as storing the full access path of the last ref-
erence that was assigned to it, then during the field read op-
eration “obj = obj2.fld” the access path stored in fld is
ignored, except for the last object itself, which is appended
to the access path of obj2. For instance, with the definition
of class Wrapper as in our previous example, let us define
references as follows:

1 Subj subj1 = new Subj(); // object s1
2 Subj subj2 = new Subj(); // object s2
3 Wrapper wrap1 = new Wrapper(subj1); // object o1
4 Wrapper wrap2 = new Wrapper(subj2); // object o2
5 Subj aliasForS2 = wrap2.ref;
6 wrap1.ref = aliasForS2;
7 Subj subj3 = wrap1.ref;

The access path for reference wrap1 is o1 (a trivial
path), while the access path for reference aliasForS2 is
(o2 →ref s2). After the assignment of the next-to-last line,
field ref of object o1 holds the access path (o2 →ref s2)
(exact copy of the value of aliasForS2). After the last line,
however, reference subj3 holds the access path (o1 →ref

s2): the only part of the access path (o2 →ref s2) kept is the
object being referenced (s2), and that object is appended to
the access path of wrap1.

The above is the main interesting semantic issue of our
deep delegation approach. Reads from fields is both the
way to form more complex access paths and the only case
an access path is not copied when references are assigned.
In all other cases, access paths are propagated unchanged.
Our above discussion of access path merging also closely
matches the main rule of our operational semantics in Sec-
tion 4. As we discuss later, an actual implementation can
optimize away access paths for references stored in object
fields—only local variables (of a reference type) need to
store access paths.

Mutability of subobject fields. As we saw, a significant
difference between our deep delegation approach and tradi-
tional inheritance is that our objects do not own their sub-
objects. A further difference is that if a subobject field is
not declared to be final, it can be mutated. As discussed
in Section 2, this is a desirable capability since it allows dy-
namic object evolution. However, mutability of subobject
fields (dynamic delegation [20]) raises interesting issues.
Our design decisions described earlier in this section (use
of static type of subobject reference in overriding, associat-
ing access path with references) address the issue: an object
may change its subobject, yet a reference always holds the
access path that allows it to perform the operations that its
type allows, ensuring type soundness.

This aspect is worth elucidating since it is key to our
approach. Access paths are values in DelphJ. They are im-
mutable, although the references between objects are muta-
ble. Consider an access path (o1 →ref o2) stored in refer-
ence variable v. Even if the linking of objects changes (e.g.,
o1 now points through field ref to o3 instead of o2) the ac-
cess path inside variable v remains (o1 →ref o2). This does
not, however, mean that variable v is immutable—it can be
set to point to any other object, just like reference variables
in Java can.

If access paths were not immutable values but
subobject references could be mutated, several type or se-
mantic soundness violations would arise. To see the issue,
consider the example of Figure 2. (The example has been
minimized yet remains involved, hence it is easier to follow
it via our explanation below.)

Interface S defines two methods, foo and baz. Two
classes, S1 and S2, implement S. The implementation of
S1.foo invokes baz and the private method bar. Notice
that S2 also declares bar with a different type signature.
Finally, the wrapper class C, overrides the two methods of
S and swaps the implementations of S1 and S2 when baz

is invoked. The main program invokes C.foo, which dele-
gates the call to S1.foo. The next method to be invoked is
baz, which is overridden by C.baz. The execution of C.baz
causes the mutation of the impl subobject reference, replac-

Figure 2 Mutable subobject fields may violate type safety.

1 interface S {
2 public int foo();
3 public void baz();
4 }
5

6 class S1 implements S {
7 final public int foo() {
8 this.baz();
9 return this.bar();

10 }
11 public void baz() { ... }
12 int bar() { ... }
13 }
14

15 class S2 implements S {
16 final public int foo() { ... }
17 public void baz() { ... }
18 String bar() { ... }
19 }
20

21 class C {
22 subobject S impl;
23 public C(){impl = new S1();}
24 public void baz(){impl = new S2();}
25 public int foo(){return impl.foo();}
26 }
27 ...
28 int result = new C().foo();
29 ...

ing an S2 object in the place of an S1. The C.baz method re-
turns to its caller (S1.foo) which then invokes bar. A naive
delegation semantics would invoke bar on the replaced sub-
object (S2.bar) which would cause a runtime type error.
Even if S2.bar returned an integer (i.e., was type compat-
ible with S1.bar), the naive delegation semantics would
cause a semantic error as there would be a partial state up-
date of both S1 and S2.

Our delegation semantics binds this of method foo2

to the immutable access path C →impl S1, and therefore,
invokes the right version of bar.

Implementation considerations. We have implemented
DelphJ in a prototype compiler,3 with front-end support for
the syntax and back-end translation to Java bytecode, us-
ing the JastAdd framework [7]. The back-end issues for the
language are significant, however, and are clearly hinted at
from our preceding discussion concerning access paths and
their semantics. The interesting elements we have discussed
above are:

• Access paths are immutable.
• References in DelphJ may refer to access paths and not

directly to objects.

2 The binding is done at invocation time, as in the usual handling of this
in OO languages—e.g., implemented via passing an extra method argument
for this.
3 Available at https://github.com/plast-lab/DelphJ .

• Access paths are built/manipulated during field reads.
• Method dispatch needs to traverse an access path.

This suggests some inefficiencies of the DelphJ program-
ming model compared to plain Java: every method invoca-
tion has to suffer extra overhead firstly for manipulating ac-
cess paths (building them during field reads) and also to per-
form lookup in the access path data structure, instead of just
making a (highly-optimized in modern VMs) virtual method
call. (In contrast, there is no extra overhead in reference as-
signments: access paths are immutable so creating extra ref-
erences to an access path does not entail copying it.)

An interesting note is that, in contrast to our earlier step-
by-step description, object fields (of a reference type) do not
need to store access paths: all objects except the last one
on the access path will be ignored, no matter which alias is
used to access the field. Consider a fragment of our earlier
example:
...
wrap1.ref = aliasForS2;
Subj subj3 = wrap1.ref;

No matter what access path aliasForS2 stores, it is
unnecessary to store all of it inside field ref of the object
referenced by wrap1. It is sufficient to only store the last
object in the access path, which is the only part of the access
path to be later used in any field dereference—e.g., appended
to the access path of wrap1 in the last line of the above
example.

The consequence of the above discussion is that access
paths are values for stack references only, while references
inside the heap (i.e., in fields) can be direct pointers, just like
in Java.

Our current implementation does not try to eliminate the
above overheads. Instead, our back-end defines a plain Java
library that performs the look up and access path merging
operations, and our front-end translates DelphJ code to use
such library operations. In the future, it is interesting to
consider optimizations so that these overheads can be brough
to a minimum, possibly with low-level data structure support
and special-case treatment of references inside a dedicated
DelphJ virtual machine.

4. Formalization
We next formalize our above informal semantic discussion
to make the design decisions more precise. We capture the
main features of DelphJ and sketch type soundness through a
formalism, FDJ, based on FGJ [13] and adapting our earlier
morphing formalism, FMJ [10, 11].

4.1 Syntax
Our formalism captures the salient features of DelphJ but
eliminates unnecessary complexity: we model both classes
and interfaces (as classes with no fields and with all their
methods having empty bodies). All fields are implicitly
subobject fields in FDJ.

Following FMJ, we also restrict similarly our treatment
of morphing: single nested patterns are permitted as long as
they do not use pattern type or name variables that are not
bound by their primary pattern. There can be only one name
variable in a pattern, and keyword η is used for name vari-
ables and reflective definitions. Reflecting over a statically
known type, using a constant name in reflective patterns, re-
flectively declared fields, static name prefixes, casting ex-
pressions, polymorphic methods and method overloading
are not formalized. Method overriding is invariant: covariant
return types or contravariant argument types are not allowed.

The syntax of FDJ is presented in Figure 3. We adopt
(or straightforwardly adapt) many of the notational conven-
tions of FGJ: C,D denote constant class names; X,Y,Z denote
type variables; N,P,Q,R denote non-variable types (which
may be constructed from type variables); S,T,U,V,W denote
types; f denotes field names; m denotes non-variable method
names; x,y denote argument names. ◁ and ↑ are shorthands
for the keywords implements and return, respectively.
All classes or “interfaces” must implement, or extend, re-
spectively, an interface, which can be the empty interface,
Interface. Hereon, we overload the term class to also
mean interface. The method notation of FDJ slightly di-
verges from standard FGJ: methods accept a single argu-
ment, and method type signature F and name n are syntac-
tically distinct from the method body b, which can either
be empty or of the form {x↑e;}. The former case permits
the specification of interfaces. In the latter case variable x
is bound inside the method body. A method can be prefixed
with a standard FMJ static for loop R.

More specifically, notations borrowed from FMJ are: η
denotes a variable method name; n denotes either variable
or non-variable names; o denotes a nested condition opera-
tor (either + or - for the keywords some or no, respectively).
We use the shorthand T for a sequence of types T0,T1,
...,Tn; x for unique variable sequence x0,x1,...,xn;
: for sequence concatenation, e.g., S:T is a sequence that
begins with S, followed by T; • and ∈ to denote an empty
sequence and sequence/set membership, respectively; and
... for values (one or any number, respectively) of no sig-
nificance to a rule. For notational convenience, we assume
that all our definitions are overloaded to apply to sequences
of arguments of the original expected type, instead of just
one argument. We also define Λ, the reflective iteration en-
vironment, which has the form ⟨Rp ,oRn⟩, where Rp is the
primary pattern, and oRn the nested pattern (o can be + or
-). Rp and Rn have the form (T, <Y◁P>F). T is the reflec-
tive type, over whose methods Rp iterates. Y are pattern type
variables, bounded by P, and F is a method pattern of the
form U →U0. [[R]] constructs the Λ corresponding to the re-
flective declaration R.

Access paths are represented as ordered lists of new
C<T>(v), whose elements are connected by ::ı , with ı be-
ing the index of the subobject field. Access paths are val-

ues (v) but valid source programs must not contain values—
they are only included in the syntax since they arise dur-
ing evaluation. The empty access path is denoted as ϵ. Note
that access paths in our formalism are shown in inverse or-
der compared to those in our informal discussion of Sec-
tion 3: “new C<T>(v) ::ı new C’<T′>(v ′) ::0 ϵ”
in the formalism corresponds to “new C’<T′>(v ′) →fi

new C<T>(v)” in the notation of Section 3—the formal-
ism maximizes the ease of deconstructing lists while the in-
formal discussion optimizes exposition.

A program in FDJ is an (e,CT) pair, where e is an FDJ
expression, and CT is the class table. Each class declaration
has an entry in CT (except Interface) and the subtyping
relation derived from CT must be acyclic.

4.2 Operational Semantics
Figure 4 defines the operational semantics of FDJ. All con-
gruence rules are standard. Reduction rules introduce or
transform values. As we already saw informally, access
paths are ordered sequences of object values and are used by
the dynamic dispatch algorithm in order to select the most
recent method overriding another method. The first element
of an access path can be considered as the object on which
field and method accesses are performed. An access path can
be constructed by either reaching an object through a se-
quence of subobject field accesses or by allocating a new
object.

In the former case, the object stored in a subobject field
is itself an access path, whose tail (i.e., its former access
path) is ignored and its head is appended to the current ac-
cess path. This is shown in rule R-FIELD, which reads field
fı by reading the ı-th constructor parameter v ı of the first el-
ement (new C<T>(v)) of the access path. Notice that the
left-hand-side of a field access must be a value. v ı is then
deconstructed to a head and a tail (i.e., the former access
path of the head) and the head is appended to its new access
path. Therefore, this implements the path elimination strat-
egy discussed in the previous section. The append operator
is annotated with ı, denoting that the head was accessed by
the next element of the access path through field fı.

In the case of allocating a new object, reduction rule R-
NEW transforms a new C<T>(v) expression, whose argu-
ments have been evaluated to values, to a value: a singleton
access path consisting of the new expression itself. The ap-
pend operator is annotated with zero (an arbitrary choice)
and the next element is the empty access path (ϵ).

Rule R-INVK expects an access path, performs method
lookup (mbody) using the method name m and the access
path v . The lookup operation returns the formal parameter
list (x), the method body e and a suffix of the input access
path v ′ of v such that m belongs in the head of v ′ and there
is no other object after the head element that overrides m.

Figure 5 defines the method body lookup rules necessary
for the operational semantics, which are only defined for
constant method names (m). It is not meaningful to define

method body lookup for variable method names (η)—we are
looking up the definition by the name of an actual method
being called, although the lookup may need to consult a
reflective iteration block to find the method body.

Function method performs method lookup in a single
class. It takes two arguments, the method name m and the
class type C<T>, looks up m only in C<T> and returns the en-
tire method definition M having substituted type and pattern
variables for concrete types. A detailed discussion regard-
ing the semantics of method is deferred until the following
section.

Predicate validOverride satisfies the condition de-
scribed in Section 3: a method call over a subobject can be
dynamically dispatched to the holder of the subobject ref-
erence only if it belongs in the static type of the subobject
field—programs cannot override methods they cannot see.
More specifically, it establishes that a method of an object
(i.e. last argument) is legally overridden by a method of an-
other object, when the latter object (a) has the same method
name and type signature as the overridden method (i.e. first
premise) and (b) accesses the former object via a field whose
type contains a method with the same name and type sig-
nature as the overridden method (i.e. second premise). No-
tice that the reflective definitions and the method bodies in
validOverride premises are irrelevant for determining
whether a method is legally overridden.

Finally, function mbody performs the lookup, by travers-
ing the input access path, employs method for extracting
the definition of m, uses validOverride to establish legal
overrides and returns the method formal parameter, method
body and a suffix of the access path, such that the head of
the returned access path and the returned method body be-
long to the same class. The first two rules MB-CLASS-S1
and MB-CLASS-S2, represent the case where the head is not
followed by any other object that legally overrides m. There-
fore, the input access path is returned along with the method
parameter and body. The last rule MB-CLASS-S3, detects
that the successor of the access path head legally overrides
m so it removes the head from the access path and continues
the search for other successors that may legally override m.
Notice the last two rules of mbody get stuck when field T′′

ı

(specified by operator ::ı) does not exist in C′, the second
element of the access path.

4.3 Static Semantics
The main typing rules of FDJ are presented in Figure 6.
There are three environments used in typing judgments: Λ,
∆ and Γ. The latter two are standard, mapping type vari-
ables to upper bounds and variables to types respectively. Λ
serves a twofold purpose. Firstly, it acts as a distinct typ-
ing environment, mapping pattern variables to their bounds.
Pattern variables can never be instantiated explicitly, as op-
posed to type variables declared in class definitions. There-
fore, ∆ does not contain pattern variables. Secondly, it main-
tains patterns (i.e., structural constraints) for types in Rp

Figure 3 FDJ: Syntax

T ::= X | N

N ::= C<T> | Interface

CL ::= class C<X◁N> ◁N {T f; M}
R ::= <X ◁ N>for(Mp;oMn) | •
F ::= T→T
M ::= R n:F b

o ::= + | -
M ::= n:F in T.methods
e ::= x | e.f | e.n(e) | new C<T>(e)| v
b ::= {x↑e;} | •
v ::= ϵ | new C<T>(v) ::ı v
n ::= m | η

Figure 4 FDJ: Reduction Rules

Reduction Rules:
v i = new C′<T′>(v ′) ::ȷ′ v ′

(new C<T>(v) ::ȷ v).fı −→new C′<T′>(v ′) ::ı (new C<T>(v) ::ȷ v) (R-FIELD)

new C<T>(v) −→ new C<T>(v) ::0 ϵ (R-NEW)

mbody(m, v)=(x,e,v ′′)

v.m(v ′)−→ [v ′/x, v ′′/this]e (R-INVK)

e0 −→ e′
0

e0.f −→ e′
0.f (RC-FIELD)

e0 −→ e′
0

e0.m(e) −→ e′
0.m(e) (RC-INV-RECV)

e −→ e′

v.m(e)−→ v.m(e′) (RC-INV-ARG)

ei −→ e′
i

new C<T>(v1,...,v i−1,ei,...)−→ new C<T>(v1,...,v i−1,e′
i,...) (RC-NEW-ARG)

and Rn that must hold over a reflective block. Every type
variable must be bounded by an interface type. Function
bound∆;Λ(T) returns the upper bound of T, when T is a
type variable, otherwise it returns T. It must be noted that,
for notational convenience, we assume pattern and ordinary
type variables have globally unique names and that pattern
variables are only used in the patterns of the reflective block
that introduced them. Furthermore, we assume that logical
connective operands that are undefined (e.g., when a func-
tion subexpression is undefined) implicitly evaluate to false .
Similarly, premises whose value depends on distinct condi-
tions are grouped in a case statement (tall left brace). Each
line represents a case with some side conditions. When a left
brace evaluates to a particular case then the following hold:
(a) the side condition of the particular case is satisfied and

(b) for each of the previous cases either their side condition
does not hold or the actual result is undefined.

In the following sections we discuss key aspects of
our type system: access path typing, reflective range
containment-disjointness, interface and class typing, and
method invocation typing.

4.3.1 Access path typing
Access paths v cannot exist in the original source code as
they are intermediate values, but they must be typed for
proving metatheorems. Access paths are typed via rule T-
VAL. Empty access paths ϵ are not typable. Non-empty ac-
cess paths are of the form new C<T>(v) ::ı v . The first
premise of T-VAL says that new C<T>(v) must be well-
typed (and thus concrete). It also says that the head of v ′

ı,
where v ′

ı is the ıth constructor argument of the head of v ,

Figure 5 FDJ: Method body lookup rules.

Valid override:
∅; ∅⊢method(m, C<T>) = m:F
∅; ∅⊢method(m, Tı) = m:F

validOverride(C<T>, Tı, m:F) (V-CLASS)

Method body lookup:
v = new C<T>(v) ::ı ϵ

∅; ∅⊢method(m, C<T>) = R m:F {x↑e;}
mbody(m, v)=(x,e,v) (MB-CLASS-S1)

v = new C′<T′>(v ′) ::ȷ v ′ ∅; ∅⊢fields(C′<T′>)=T′′ f

∅; ∅⊢method(m, C<T>) = M = R m:F {x↑e;}
¬validOverride(C′<T′>, T′′

ı , M)
mbody(m, new C<T>(v) ::ı v)=(x,e,new C<T>(v) ::ı v) (MB-CLASS-S2)

v = new C′<T′>(v ′) ::ȷ v ′ ∅; ∅⊢fields(C′<T′>)=T′′ f

∅; ∅⊢method(m, C<T>)= M validOverride(C′<T′>, T′′
ı , M)

mbody(m, new C<T>(v) ::ı v)=mbody(m, v) (MB-CLASS-S3)

Figure 6 FDJ: Typing Rules

Expression typing:
∆;Λ;Γ ok

∆;Λ;Γ⊢x ∈Γ(x) (T-VAR)

∆;Λ;Γ⊢e0∈T0 ∆;Λ ⊢fields(bound∆;Λ(T0))=T f

∆;Λ;Γ⊢e0.fi∈Ti (T-FIELD)

∆;Λ;Γ⊢e ∈ T ∆;Λ;Γ⊢e′∈ T′′′ ∆;Λ ⊢T′→T′′ ok
∆;Λ ⊢mtype(n, T)=T′→T′′ ∆;Λ ⊢T′′′<:T′

∆;Λ;Γ⊢e.n(e′)∈T′′ (T-INVK)

∆;Λ ⊢C<T> ok ∆;Λ;Γ ok ∆;Λ ⊢fields(C<T>)=T′ f

∆;Λ;Γ⊢e∈T′′ ∆;Λ ⊢T′′<:T′ ∆;Λ ⊢concrete(C<T>,true)
∆;Λ;Γ⊢new C<T>(e)∈C<T> (T-NEW)

∆;Λ;Γ⊢new C<T>(v)∈C<T>
v=new C′<T′>(v ′) ::ȷ v ′ implies (v ′

ı=new C<T>(v) ::k v ′′ and ∆;Λ;Γ⊢v∈C ′<T′>)

∆;Λ;Γ⊢new C<T>(v) ::ı v∈C<T> (T-VAL)

Method typing:
n=m ⇔ R=• [[R]]=Λ ∆;Λ;Γ ok ∆;Λ ⊢T,T′ ok

b={x↑e;} implies (∆;Λ;Γ,x 7→T′⊢e ∈T′′ and ∆;Λ ⊢T′′<:T)
∆;Γ⊢R n:T′→T b OK (T-METH)

Class typing:
∆=X<:N Γ=this7→C<X> ∆;∅⊢C<X>:T ok

for all Ri ni:Fi bi, Rj nj:Fj bj ∈ M, ∆;Γ⊢Ri ni:Fi bi OK ∆⊢validRange([[Ri]], N)
and i ̸= j implies (∆⊢disjoint([[Ri]], [[Rj]]) and ni=nj=η or Ri=Rj=• and ni=m and nj=m′)

class C<X◁N>◁N { T f; M} OK (T-CLASS)

Figure 7 FDJ: Method type lookup.

Specializing reflective environment:
∆;[W/Y]⊢Λ⊑Λ⟨Rp ,oRn⟩

∆;Λ;[W/Y]⊢specialize(η, ⟨Rp ,oRn⟩) (SP1)

∆;Λ⊢mtype(m, T0)=[W/Y]F1 ∆;Λ ⊢W<:P ∆;Λ⊢mtype(m, T1)=[W/Y]F2 ⇔ o=+

∆;Λ;[W/Y]⊢specialize(m, ⟨(T0, <Y◁P>F1),o(T1, <Y◁P>F2)⟩) (SP2)

Method lookup:
[[[C]]]=X<:N;N R n′:F b ∈CT (C) Λd=[T/X][[R]]

[W/Y]=

{
[W/Y] if ∆;Λ;[W/Y]⊢specialize(n, Λd)
• otherwise n=n′=m and Λd=∅

∆;Λ⊢method(n, C<T>)=[T/X][W/Y](R n:F [n/n′]b) (M-CLASS)

Method type lookup:{
∆;Λ ⊢mtype(n, bound∆;Λ(X))=F
otherwise (+(X, <Y◁P>F),η)∈Λ×{n}

∆;Λ⊢mtype(n, X)=F (MT-VAR) ∆;Λ⊢method(n, C<T>)=R n:F b
otherwise ∆;Λ ⊢concrete(C<T>,false)
and [[[C]]]=X<:N;N and ∆;Λ ⊢mtype(n, N)=F

∆;Λ ⊢mtype(n, C<T>)=F (MT-CLASS)

Figure 8 FDJ: Containment and disjointness rules.

Reflective range containment:

∆;[W/Y]⊢Rp⊑RR
′
p

{
∆; • ⊢ Rn ⊑R [W/Y]R′

n if o = +
∆; • ⊢ [W/Y]R′

n ⊑R Rn otherwise

∆;[W/Y]⊢⟨Rp ,oRn⟩⊑Λ⟨R′
p ,oR

′
n⟩ (SB-Λ)

Single range containment:
R1=(T1, <X◁Q>F1) R2=(T2, <Y◁P>F2) ∆;∅⊢T2<:T1

F1=[W/Y]F2 W<:S⊆X<:Q ∆;∅⊢S<: P

∆;[W/Y]⊢R1⊑RR2 (SB-R)

Reflective range disjointness:
∆⊢+Rp⊗o′R′

n or ∆⊢+R′
p⊗oRn or ∆⊢oRn⊗o′R′

n

∆⊢disjoint(⟨Rp ,oRn⟩, ⟨R′
p ,o

′R′
n⟩) (DS-Λ)

Mutually exclusion of range conditions:

o ̸=o′
{

∆;[W/X]⊢R1⊑RR2 if o = +
∆;[W/X]⊢R2⊑RR1 otherwise

∆⊢oR1 ⊗ o′R2 (ME)

Figure 9 FDJ: Well-formness rules and auxiliary definitions.

Well-formed typing context:
∆⊢Λ ok ∆;Λ ⊢range(Γ) : range(∆) ok

∆;Λ;Γ ok (WF-TYCON)

Well-formed types:
∆;Λ ⊢Interface ok (WF-INTER)

X∈dom(∆):X Λ=⟨(T1, <X◁N>F1),(T2, <X◁N>F2)⟩
∆;Λ ⊢X ok (WF-VAR)

∆;Λ ⊢T ok [[[C]]]=X<:N;N
∆;Λ ⊢concrete(N:N,false) ∆;Λ⊢T<:[T/X]N

∆⊢implement(C<T>) X<:N;∅⊢N:N ok X not in ∆,Λ
∆;Λ ⊢concrete(C<T>,true) or ∆;Λ ⊢concrete(C<T>,false)

∆;Λ ⊢C<T> ok (WF-CLASS)

∆;Λ ⊢T1,T2 ok
∆;Λ ⊢T1→T2 ok (WF-FTYP)

Well-formed Reflective Environments:
Λ=⟨(T1, <X◁N>F1),o(T2, <X◁N>F2)⟩ implies dom(∆) ∩ X = ∅
∆;Λ ⊢concrete(N,false) ∆;∅⊢N:T1,2 ok ∆;Λ ⊢F1,2 ok

∆ ⊢Λ ok (WF-Λ)

Figure 10 FDJ: Subtyping rules.

Subtyping rules:
∆;Λ ⊢T<:T (S-REFL)

Λ=⟨(T1, <X◁N>F1),(T2, <X◁N>F2)⟩ ∆′=∆:X<:N

∆;Λ ⊢X <: ∆′(X) (S-VAR)

∆;Λ ⊢T1<:T2 ∆;Λ ⊢T3<:T4

∆ ⊢T1<:T4 (S-TRANS)

[[[C]]]=X<:N;N
∆;Λ ⊢fields[T/X]N= •
∆;Λ ⊢C<T> <:[T/X]N (S-CLASS)

must be structurally equal to new C<T>(v) (i.e., v ′
ı=new

C<T>(v) ::k v ′′). Therefore a relation is established via op-
erator ::ı between its left and right element (i.e., the head of
the access path is the ıth field of the head’s successor). If the
remaining access path v is not empty, then it must also be
well-typed. Notice that the type assigned to an access path is
identical to the type of its head element.

4.3.2 Disjointness and Containment
One of the core aspects of FDJ is the ability to invoke, over-
ride, and declare reflective methods. In order to safely in-
voke or override a method from another method, the re-
flective environment of the latter method must be con-

tained in the reflective environment of the former method.
(This is a conservative restriction, used to make reasoning
over containment more manageable.) We use the predicate
∆;[W/Y]⊢⟨Rp ,oRn⟩⊑Λ⟨R′

p ,oR
′
n⟩ (defined in Figure 8) to

denote that ⟨Rp ,oRn⟩ is contained in ⟨R′
p ,oR

′
n⟩. Notice

that both environments must share the same sign o. W de-
note the pattern variables of the left operand of ⊑Λ that
must be substituted for the pattern variables Y of the right
operand in order for operand containment to hold (i.e., [W/Y]
can be seen as the outcome of a unification process). Reflec-
tive environment containment is expressed as range contain-
ment denoted as ∆;[W/Y]⊢R1⊑RR2 between the ranges of
reflective environments. When o is of the form - then the

Figure 11 FDJ: Auxiliary definitions.

Translation Functions:
Mp=n:F1 in T.methods Mf=n:F2 in T′.methods[[
<Y◁P>for(Mp ;oMf)

]]
=⟨(T, <Y◁P>F1),o(T′, <Y◁P>F2)⟩

[[•]] =∅
CT (C)=class C<X◁N>◁N { ... }

[[[C]]] = X<:N;N

Subtype range validity:
for all C<T>,n ∆;∅⊢N<:C<T> and ∆;Λ⊢method(n, C<T>)=R n:F b implies
Λ=∅ ⇔R=• and (R̸=• implies ∆;[W/Y]⊢Λ⊑Λ[[R]] or ∆⊢disjoint([[R]], Λ))

∆ ⊢validRange(Λ, N)
Concrete classes:

¬arg implies ∆;Λ ⊢fields(N)= ∅
for all R n:F b ∈ CT (N) (b ̸= •⇔arg)

∆;Λ ⊢concrete(N,arg)
Field lookup:

∆;Λ⊢[T/X]S ok N=Interface and S f=• or
N=C<T> and CT (C)=class C<X◁N>◁N {S f; ...}

∆;Λ ⊢fields(N)=[T/X]S f

Implement relation:
for all T,Λ,n ∆;Λ ⊢N<:T and ∆;Λ ⊢mtype(n, T)=F implies ∆;Λ ⊢mtype(n, N)=F

∆ ⊢implement(N)

order of nested ranges is swapped. The two candidate pairs
for range containment (Rp ,R′

p) and (Rn ,R′
n) (or (R′

n ,Rn),
if swapped) must satisfy the containment condition for the
same substitution map [W/Y]. Two ranges R and R′ are con-
tained when their method signatures match once pattern sub-
stitution is performed and the statically iterated type of the
latter range is a subtype of the statically iterated type of the
former range.

Reflective methods share the same name η. Therefore,
the type system employs reflective method disjointness (de-
fined in Figure 8) to guarantee absence of reflective method
conflicts in class declarations. Disjointness between two re-
flective environments is expressed in terms of containment:
two reflective environments are disjoint when there exists a
pair of ranges from each reflective environment such that
ranges have opposite signs and one range is contained in
the other range. (This condition is conservative and can be
weakened. In the full language, two positive ranges can be
disjoint, e.g., by exploiting the fact that two concrete types
int and Object are guaranteed distinct, hence patterns iter-
ating over signatures that contain them will never have com-
mon members. We chose not to model this aspect in FDJ as
it is orthogonal to the core reasoning.)

4.3.3 Interface and class typing
An important predicate for typing classes and “interfaces”
is concrete (defined in Figure 11), taking two parame-
ters, a type T and a boolean flag. When the flag is set to
true the predicate holds when there exists no method with
empty body in T. When the flag is false , then T must have
the properties of an interface: it must only contain meth-
ods (no fields) with empty bodies. (Thus, concrete(C<T>,
false) is not the negation of concrete(C<T>, true).) There-
fore, premise concrete in rule T-NEW enforces the invari-
ant that only concrete classes with full method implemen-
tations can be instantiated. concrete is also used in class
well-formedness requiring that type upper bounds (includ-
ing parent classes) be interfaces. Classes must implement all
methods of their parent interface. This is enforced by predi-
cate implement , defined in Figure 11.

T-CLASS, the rule for typing classes, enforces the fol-
lowing invariants: (a) classes can either contain reflective
or standard method declarations but not both (b) stan-
dard method declarations have distinct names (c) reflective
method declarations are disjoint (d) each reflective declara-
tion is either disjoint or contained with respect to the re-
flective declarations of the class supertypes (using predi-

cate validRange) (e) each method must be well-typed using
rule T-METH, which performs conditional type-checking
to the method body b, when it is non-empty and (f) well-
formedness of declared types and the typing context (defined
in Figure 9).

4.3.4 Method Invocation Typing
Function invocations are typed via T-INVK, which employs
function mtype in order to determine the type signature F
of a method n, member of some type T. The definition of
function mtype is provided in Figure 7.

Rule MT-VAR is applied for method signature lookup
inside type or pattern variables. The lookup algorithm first
visits the upper bound of the specified type variable and on
failure it looks up positive structural constraints entailing the
requested variable in the reflective environment. Rule MT-
CLASS is applied when looking up a method signature in
a class type. The lookup algorithm attempts to extract the
type signature from the specified class type, using function
method and on failure it continues the lookup on the parent
class provided that the specified class in an interface.

Function method , defined in rule M-CLASS, selects a
method such that a pattern variable substitution map [W/Y]
exists for the method’s reflective environment R. It returns
the selected method having substituted class-local type and
pattern variables for variables of the typing context as well
as the method name. If the class contains standard methods
then the substitution environment is empty and the requested
method name must match the method’s name. Otherwise, the
class contains reflective methods (recall that a class cannot
contain both standard and reflective methods) and predicate
specialize is employed for determining the pattern variable
substitution map. The form of rule M-CLASS may at first
seem strange. In order to reach the “otherwise” clause, one
needs to prove that the specialize predicate cannot hold. This
is easy to establish via syntactic conditions, however, since,
for an empty R (i.e., for non-reflective methods), Λd will be
empty, and thus can never match an outcome of a rule that
establishes specialize.

If the requested method name is variable, i.e., of the form
η, then the reflective environment of R must contain the re-
flective environment of the typing context (rule SP1). Oth-
erwise, rule SP2 applies and mtype is employed on the first
element of the primary range corresponding to R. The type
signature returned by mtype must be equal to the method
signature specified by the second element of the primary
range modulo the substitution map [W/Y]. If the secondary
range is positive then mtype must return the same substi-
tution map. Otherwise, mtype is either undefined or the re-
turned substitution map does not match the map of the pri-
mary range.

4.4 Soundness
In this section, we state the soundness of FDJ as a result of
Subject Reduction and Progress lemmas for an expression e.

Theorem 1 (Subject Reduction). If ∅;∅;∅⊢e∈T and e →
e′, then for some S, ∅;∅;∅⊢e′ ∈S and ∅;∅⊢S<:T.

Proof sketch. By structural induction on the reduction rules.
In the case of rules RC-INV-ARG and RC-NEW-ARG, their
subterms make a step and are well-typed by inversion of T-
INVK and T-NEW respectively. The induction hypothesis
is then applied and the new subterm typing derivations are
substituted in the premises of T-INVK and T-NEW, respec-
tively. In the case of R-NEW the proof is immediate by us-
ing ∅;∅;∅⊢new C<T>(v)∈C<T> and T-VAL. In R-FIELD
we have that v i and new C<T>(v) ::ȷ v are well-typed, by
inversion of ∅;∅;∅⊢(new C<T>(v) ::ȷ v).fı ∈T. There-
fore, new C′<T′>(v ′) ::ı (new C<T>(v) ::ȷ v) is well-
typed by T-VAL. The type of new C′<T′>(v ′), which
is identical to the type of v i, is a subtype of T by T-
NEW. In RC-FIELD, the application of the induction hy-
pothesis implies the new subterm is well-typed with a
subtype S1 of the original subterm type T1. T1 has at
least one field, thus the concrete predicate holds. It suf-
fices to show that if ∅;∅⊢fields(bound∅;∅(T1))=T f, then
∅;∅⊢fields(bound∅;∅(S1))=T f. S1 and T1 can only be
identical as a consequence of the well-formedness rela-
tion: all supertypes of a type have no fields. In RC-INV-
RECV, the new subterm is well-typed with S1, a well-formed
subtype of the original subterm type T1, using the induc-
tion hypothesis. It suffices to show that if ∅;∅⊢mtype(n,
T1)=T′→T′′, then ∅;∅⊢mtype(n, S1)=T′→T′′. The well-
formedness of S1 implies ∅⊢implement(S1), which com-
pletes the proof. In the case of R-INVK, the typing deriva-
tion of v and mbody(m, v)=(x,e,v ′′) imply that v ′′ is well-
typed with T′=D<T> and ∅;∅⊢method(m, T′)=M, where M
is the concrete method to be executed. T-METH implies the
body e of M is well-typed: X<:N;Λd;this7→T′,x 7→T1⊢e
∈T2, where T2 is a subtype of M’s return type. Us-
ing the type variable substitution lemma we have that
∅;∅;[T/X](this 7→T′,x 7→T1)⊢[T/X][m/η]e ∈[T/X]T2. No-
tice that method variables are also substituted in this step and
Λd is removed. T-INVK implies v ′ is well-typed for some
subtype of [T/X]T1. The proof is completed by applying the
variable substitution lemma.

Theorem 2 (Progress). If ∅;∅;∅⊢e∈T holds, then e is ei-
ther a value v or it can be evaluated to another expression
e′.

Proof sketch. By structural induction on the typing deriva-
tion of e. In the case of T-VAL the proof is immediate. T-
VAR does not apply as the typing context is empty. In the
case of T-NEW, we perform case analysis on the shape of
e. If e is of the form new C<T>(v), rule R-NEW applies.
Otherwise, the induction hypothesis to the first non-value
argument is applied and the proof is complete by rule RC-
NEW-ARG. Similar reasoning is applied for T-FIELD us-
ing R-FIELD and RC-FIELD and T-INVK when e is not of

the form v.m(v ′) using RC-INV-RECV and RC-INV-ARG
respectively. The last case of T-INVK is when e is of the
form v.m(v ′). We use the value lemma saying that when
∅;∅;∅⊢ v ∈T′ and ∅;∅⊢mtype(m, T′) then mbody(m, v) is
defined and rule R-INVK is employed to perform a step.

Theorem 3 (Type Soundness). If ∅; ∅; ∅⊢e∈T and e−→∗e′,
then e′ is either a value v or it can be evaluated to another
expression e′′.

Proof sketch. Conclusion follows from Theorem 1 and The-
orem 2

5. Related Work
The aspects of our language design discussed in Sections 2
and 3 make it unique. Nevertheless, there are several ap-
proaches that relate to different facets of our design.

Delegation has been proposed for both class-based
and object-based languages. Object-based languages (e.g.,
Javascript) do not support class-based inheritance or sub-
typing and behavior sharing is realized between objects by
explicitly setting in runtime their parents. Self [32] is an
object-based language that implements forwarding of mes-
sages. Each object can understand messages that correspond
to an object’s slot, or, if any slots are indicated as parents,
forward the message to them. However, this approach suffers
from potential runtime errors when invocations can produce
missing method exceptions, due to the lack of static-typing
guarantees. Furthermore, there is a fundamental difference
between dispatch chaining in dynamic languages and our ap-
proach. In object-based languages, the dispatch mechanism
depends on an object knowing its parents, whereas in our
case the dispatch chain is different for different references to
the same object.

Kniesel [19] proposed the DARWIN model using delega-
tion as a complement of forwarding-based object composi-
tion. In this model, child objects extend the behavior of par-
ent objects, by employing both delegation and consultation
during message dispatch. The implementation of DARWIN,
LAVA, supports dynamic delegation: two independently de-
veloped components can be composed at runtime in a type-
and semantically sound manner, by restricting the declared
parent type to conform to a certain interface. The DARWIN
model does not provide full late binding support for meth-
ods of composed objects. Therefore it is impossible to use
redefined objects that delegate method invocations with their
self rebound.

Generic Wrappers [4] support static delegation between
“wrappers” and “wrappees” via statically declared wraps

clauses. Thus, the wrapper-wrappee relationship is fixed, just
as in class-based inheritance.

Delegation Layers [25] combine delegation and virtual
classes to provide polymorphic runtime composition and on-
the-fly extensibility. Extensions have only a local effect thus
both the original and the modified behaviors are accessible.

The desired behavior can be selected by referring to a col-
laborating object via variables of different static type. In our
approach, a new access path is created when accessing an
object through subobject fields of wrapper objects. This
strategy keeps the semantics simple and gives a clearer view
to the programmer of when an object’s behavior is extended.

The Compound Reference (CR) model proposed by [26,
27] introduces a mechanism to complement ordinary refer-
ences using redirection semantics. A CR is in general a path
of object references in an object tree. Once the path is con-
structed, it is considered immutable as a whole. The CR has
a static type and a temporary type. The static type of the CR
is the static type of its tail and the temporary type is updated
every time a field update takes place. Thus, CRs are incre-
mentally composed as a sequence of regular references to
objects that are immutable as a whole, while the access path
can change over time due to instance variable changes. Over-
riding in a class C is realized through implicit methods that
are created over every field f. Method calls are dispatched
(from C to f), based on these implicit methods. In the CR
model, self messages will not be dispatched to wrapper ob-
jects; hence the model does not support late binding, in the
sense of our work. The implicit methods of the CR model
can be encoded in DelphJ using static-for patterns.

The FeatherWeight Wrap Java work [2], presents a formal
semantics for a simple wrapper-based language. The lan-
guage focuses on two aspects: wrapping precedence order
and the binding of self. However, FeatherWeight Wrap Java
employs “method specialization” and not complete overrid-
ing of a wrapper object as in DelphJ. Additionally, a class
in [2] cannot wrap more than one object. In our work, the
functionality of the “delegate after” and “delegate before”
special keywords from FeatherWeight Wrap Java can be eas-
ily encoded using static-for patterns.

Bettini et al. [1] implement an object composition mecha-
nism that uses structural subtyping, while maintaining nomi-
nal subtyping (extends relationship) among types. That work
has similarities with our concept of access paths. Bettini et
al.’s subobjects are shared and their “access paths” coun-
terparts are extended using a special composition operator,
which allocates a new object representing the new access
path. In our work, when subobject fields are read no allo-
cation takes place. In addition, it is possible to “re-compose”
objects, by updating their fields.

Accidental method overriding can arise from poor de-
sign decisions in class hierarchies, or more complex sce-
narios that involve mixins. MixedJava [8], McJava [14] and
improved variants [15] deal with this problem extensively
through context aware conflicting method resolution mean-
ing that run-time context information is used, called view, to
determine which method should be invoked when an acci-
dental overriding exist.

Bettini et al. [1] also propose a similar solution.
In DelphJ, we adopt the strategy initially proposed

by Kniesel [20]: only non-final methods declared in
subobject field types can be overridden.

Schippers et al. [29, 30] have developed a delegation-
based machine model for aspect-oriented programming.
They present semantic mappings of four high-level programs
to their machine model that ensures semantic equivalence
between source and the delegation-enabled translation. A
Proxy object is the basic abstraction entity that is responsi-
ble for receiving messages directed to an object and delegat-
ing them to the actual receiver. Proxy objects are inserted
and removed in delegation chains (a concept similar to the
subobject access path) by static and dynamic weaving. The
dispatch algorithm maintains a list of messages along with
their implementations, as well as a constant function Deli,
which determines the address of the delegate of an object at
some address. (The function is prepared statically and main-
tained dynamically.) This function is updated when the store
of objects is updated. A Look function which recursively
traverses the delegation list, uses the Deli function.

6. Conclusions
Inheritance has primary importance in most OO languages,
yet its value is routinely questioned. Despite the shortcom-
ings of inheritance, there has not been a replacement pro-
posed that addressed them without sacrifices. We have pre-
sented a language design that aspires to do so. Our design
eliminates inheritance without sacrificing ease of code reuse.
Our language supports subtyping (via interfaces), morph-
ing (for controlled automatic forwarding of method calls)
and deep delegation (for late binding semantics and refine-
ment of existing code). Through our exploration of the com-
bination of these features, we showed interesting subtleties
in supporting flexible (per-field) late binding semantics and
discussed design choices that address common problems.

We believe that our design can inspire OO languages that
move beyond inheritance to achieve highly flexible, modular
programming without sacrificing either power or control.

Acknowledgments
We gratefully acknowledge funding by the Greek Secretariat
for Research and Technology under the “MorphPL” Excel-
lence (Aristeia) award; and by the European Union under a
Marie Curie International Reintegration Grant and a Euro-
pean Research Council Starting/Consolidator grant.

References
[1] Lorenzo Bettini, Viviana Bono, and Betti Venneri. Delegation

by object composition. Science of Computer Programming,
76(11):992–1014, November 2011.

[2] Lorenzo Bettini, Sara Capecchi, and Elena Giachino. Feath-
erweight wrap java. In Proc. Symp. on Applied Computing
(SAC), pages 1094–1100, Seoul, Republic of Korea, 2007.

[3] Gilad Bracha and William Cook. Mixin-based inheritance.
In Proc. European Conference on Object-Oriented Program-
ming (ECOOP), volume 25, pages 303–311, 1990.

[4] Martin Büchi and Wolfgang Weck. Generic wrappers.
In Proc. European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 201–225, Sophia Antipolis and
Cannes, France, 2000.

[5] William R. Cook, Walter Hill, and Peter S. Canning. In-
heritance is not subtyping. In Proc. Symp. on Principles of
Programming Languages (POPL), pages 125–135, San Fran-
cisco, USA, 1989.

[6] Stphane Ducasse, Oscar Nierstrasz, Nathanael Schrli, Roel
Wuyts, and Andrew P. Black. Traits: A mechanism for fine-
grained reuse. ACM Transactions on Programming Lan-
guages and Systems, 28(2):331–388, 2006.

[7] Torbjörn Ekman and Görel Hedin. The JastAdd extensible
Java compiler. In Proc. of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 1–
18, New York, NY, 2007.

[8] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. In Proc. Symp. on Principles
of Programming Languages (POPL), pages 171–183, San
Diego, USA, 1998.

[9] Allen Holub. Why extends is evil: Improve your
code by replacing concrete base classes with inter-
faces. http://www.javaworld.com/javaworld/jw-08-2003/jw-
0801-toolbox.html, August 2003.

[10] Shan Shan Huang and Yannis Smaragdakis. Expressive and
safe static reflection with MorphJ. In Proc. Conf. on Pro-
gramming Language Design and Implementation (PLDI), vol-
ume 43, pages 79–89, Tucson, AZ, USA, 2008.

[11] Shan Shan Huang and Yannis Smaragdakis. Morphing: Struc-
turally shaping a class by reflecting on others. ACM Transac-
tions on Programming Languages and Systems, 33(2):1–44,
February 2011.

[12] Shan Shan Huang, David Zook, and Yannis Smaragdakis.
Morphing: Safely shaping a class in the image of others.
In Erik Ernst, editor, Proc. European Conference on Object-
Oriented Programming (ECOOP), volume 4609 of LNCS,
pages 303–329, July 2007.

[13] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight java: A minimal core calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems,
23(3):396–450, 2001.

[14] Tetsuo Kamina and Tetsuo Tamai. McJava – a design and
implementation of java with mixin-types. In Proc. of Asian
Programming Languages and Systems Symp. (APLAS), pages
4–6, Taipei, Taiwan, 2004.

[15] Tetsuo Kamina and Tetsuo Tamai. Selective method combina-
tion in mixin-based composition. In Proc. Symp. on Applied
Computing (SAC), pages 1269–1273, Santa Fe, New Mexico,
2005.

[16] Majorinc Kazimir. Ellipse-circle dilemma and inverse inheri-
tance. In Proceedings of the 20th International Conference on
Information Technology Interfaces, Pula, Croatia, 1998.

[17] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. In Proc. European Conference on Object-Oriented
Programming (ECOOP), pages 327–353, London, UK, 2001.

[18] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Ir-
win. Aspect-oriented programming. In Proc. European Con-
ference on Object-Oriented Programming (ECOOP), volume
1241, pages 220–242. Springer, Heidelberg, Germany, and
New York, 1997.

[19] Günter Kniesel. Type-safe delegation for run-time component
adaptation. In Proc. European Conference on Object-Oriented
Programming (ECOOP), pages 351–366, Lisbon, Portugal,
1999.

[20] Günter Kniesel. Dynamic object-based inheritance with sub-
typing. PhD thesis, Universität Bonn Institut für Informatik
III, 2000.

[21] Günter Kniesel, Mechthild Rohen, and Armin B. Cremers. A
management system for distributed knowledge base applica-
tions. In Verteilte Künstliche Intelligenz und kooperatives Ar-
beiten, 4. Internationaler GI-Kongress Wissensbasierte Sys-
teme, pages 65–76, 1991.

[22] Henry Lieberman. Using prototypical objects to implement
shared behavior in object-oriented systems. In Proc. of
Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 214–223, New York, NY, USA,
1986.

[23] Mira Mezini. Dynamic object evolution without name col-
lisions. In Proc. European Conference on Object-Oriented
Programming (ECOOP), pages 190–219, Jyväskylä, Finland,
1997.

[24] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile
base class problem. In Proc. European Conference on Object-
Oriented Programming (ECOOP), pages 355–382, Brussels,
Belgium, 1998.

[25] Klaus Ostermann. Dynamically composable collaborations
with delegation layers. In Proc. European Conference
on Object-Oriented Programming (ECOOP), pages 89–110,
Nantes, France, 2006.

[26] Klaus Ostermann and Mira Mezini. Object-oriented composi-
tion untangled. In Proc. of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
283–299, New York, NY, USA, 2001.

[27] Klaus Ostermann and Mira Mezini. Blurring the borders be-
tween object composition, inheritance, and delegation. In Pro-
ceedings of the Inheritance Workshop at the 16th European
Conference on Object-Oriented Programming, pages 65–68,
2008.

[28] Nathanael Scharli, Stephane Ducasse, Oscar Nierstrasz, and
Andrew Black. Traits: Composable units of behavior. In
Proc. European Conference on Object-Oriented Program-
ming (ECOOP), Darmstadt, Germany, 2003.

[29] Hans Schippers, Michael Haupt, and Robert Hirschfeld. An
implementation substrate for languages composing modular-
ized crosscutting concerns. In Proc. Symp. on Applied Com-
puting (SAC), SAC ’09, pages 1944–1951, New York, NY,
USA, 2009.

[30] Hans Schippers, Dirk Janssens, Michael Haupt, and Robert
Hirschfeld. Delegation-based semantics for modularizing
crosscutting concerns. In Proc. of Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
pages 525–542, New York, NY, USA, 2008.

[31] Marcelo Sihman and Shmuel Katz. Superimpositions
and aspect-oriented programming. The Computer Journal,
46(5):529–541, 2003.

[32] David Ungar and Randall B. Smith. Self: The power of
simplicity. In Proc. of Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 227–
242, New York, NY, USA, 1987.

