
All Things Flow
Unfolding the History of Streams (extended abstract)

Aggelos Biboudis
Swisscom AG
Switzerland

Jeremy Gibbons
University of Oxford
United Kingdom

Oleg Kiselyov
Tohoku University

Japan

Abstract
Heraclitus observed that all things flow and nothing remains
still; “you cannot step into the same river twice”. So what is a
stream in computer science, and where did this notion come
from? We divide streaming abstractions into four categories:
a) as a means of processing lots of data in limited memory;
b) as event processing and correlation; c) to capture the se-
mantics of I/O; and d) as iteration abstractions. Following
these four axes, we unfold the history of streams, and give
an overview of how this abstraction started to come into
existence as a mainstream programming language facility.
Our goal is to present briefly the related concepts through lit-
erature review, drawing connections between programming
language features and technologies. This discussion will be
of interest to the young computer science researcher, the
curious software engineer, and the grizzled database query
optimization specialist.

1 Facets of Streams
Over several decades programming languages have shifted
away from the sequential programming model that the von
Neumann architecture so vigorously imposed [2]. Nowadays,
instead of commands and static storage, programmers often
have to think in terms of processes and (high-performance)
transformations over streams. By streams we, in computer
science, mean a sequence of elements that can be piped
through a series of transformation steps. Characteristically,
data is accessed in strict sequence rather than in a random
access pattern. In return for limited expressiveness, we gain
the opportunity to process large amount of data efficiently,
in limited space.

Streams for data processing in sublinear space. One of
the most recognizable examples of streams is Unix pipes
[23, 24], instigated by McIlroy. He recorded his vision on a
yellowed sheet of paper kept pinned to his office wall [18]:
“We should have some ways of connecting programs like
garden hose – screw in another segment when it becomes
necessary to massage data in another way. This is the way of
IO also.” This image of a ‘hose’, carrying, and transforming
potentially infinite amount of data is evocative of all stream-
ing libraries. A library user, like in assembling a hose, gets
to declare what activities take place but not how the data
access is scheduled. We can trace this thread back at least to

Conway’s design [5] for a one-pass COBOL compiler, whose
modules are like segments of a hose.
This massaging – analyzing and transforming – large

amounts of data is the domain of the traditional database
management (see §3), which has evolved into so-called data
analytics: performing Extract–Transform–Load jobs (ETL)
over centralized architectures called data lakes. ETL consists
of moving data from heterogeneous sources (E) to other
targets (L), after several transformation steps (T). Streams
are promoted to first-class status [26].

Streams as event processing and correlation. Informa-
tion flow processing is the other class of stream processing
applications. It is defined as “processing continuously flow-
ing data from geographically distributed sources at unpre-
dictable rates to obtain timely responses to complex queries”
[7]. Its characteristic example is complex event processing:
given incoming notifications of events observed by sources
(e.g., sensor readings), “filter and combine such notifications
to understand what is happening in terms of higher-level
events to be notified to sinks, which act as event consumers.”
Intrusion detection, environment monitoring, and online
analysis of stock prices are clear examples. A less obvious
example is complex user-interfaces such as modern GUI and
multimedia applications.
Information flow processing thus encompasses dataflow,

reactive and signal processing – often captured under the
name of stream processing systems [29]. It also has deep roots
to Kahn process networks [13]; networks where concurrent
processes communicate only through one-way FIFO chan-
nels with unbounded capacity. Dataflow networks are usu-
ally considered a special case of Kahn networks. The first
dataflow language, Lucid [30], appeared in 1970s. The two
modes of executions arise: data driven (eager evaluation)
where computation depends on the availability of data; and
demand driven (lazy evaluation) where the agents request
data from their inputs. These terms are commonplace in pro-
gramming language semantics, modern streaming libraries
and more.

Streams to capture the semantics of I/O. Landin [15], in
1965, was the first to observe that a denotation of ALGOL-
60’s for-statements with for-lists leads to a peculiar list
processing where the items of an intermediately resulting
list “never exist simultaneously.” Noting the similarity with
Conway’s approach, he coined the term “stream”. Much later



Conference’17, July 2017, Washington, DC, USA Aggelos Biboudis, Jeremy Gibbons, and Oleg Kiselyov

streams have been used to give the ‘pure functional’ seman-
tics of I/O in early Haskell [11]. The popular ‘trace semantics’
is also based on streams [12].

We connect the dots between lists (and their constructors),
streams (and their destructors), recursion over finite lists,
and co-recursion over infinite streams [25].

Streams as iteration abstractions. In order to understand
the nature of streams as programming abstractions for it-
eration, we have to take a good look at the past. We trace
the lineage of streams from FORTRAN [3] and IPL [21] to
LISP [17], Common LISP [28] and Clojure [10]. The for-
mer already include powerful mechanisms for streaming
computations: sequences, streams, loops and series. We also
look at the early abstractions of these mechanisms: itera-
tors in CLU [16], a form of generators as in IPL-V [20] and
Alphard [27]. Alphard in particular was aimed at the de-
velopment of verifiably reliable software. Abstraction was
indispensable in simplifying and modularizing Hoare-style
proofs. Since iterative computations invariably loop over the
elements of some collection (be it as simple as a range of
integers), it made sense to separate operations on the current
element (the loop body) from obtaining the next element
(the loop control). The goal was to hide the details of the
collection, encapsulate the state of the enumeration, and
separate concerns in the proof.

These abstractions appear again and again, from modern
C++, for example, offering a multitude of iterators explicitely
or even implicitly through “smarter” for-loops, to C# and
Python’s first-class support for generators. We revisit the
historical milestones that gave shape to the semantics of
streaming APIs from the perspective of programming lan-
guage abstractions, and we argue that the same patterns
emerge in other disciplines of computer science. We believe
that a concise and focused study of the history of streams
will guide the engineer in navigating the design space ef-
fectively. In the full paper we complement the conceptual
discussion with an analysis of how streams took a form as a
linguistic construct in several programming languages.

2 Motivating Example 1: Streaming APIs
Java 8 introduced lambdas (i.e., anonymous functions) with
the explicit purpose of enabling streaming abstractions, which
present an accessible, natural path to multicore parallelism –
perhaps the highest-valued domain in current computing.
Other languages, such as Scala, C#, and F#, also support
lambda abstractions and streaming APIs, making streams
a central theme of their approach to parallelism. Although
the specifics of each API differ, there is a core of common
features and near-identical best practices for users of these
APIs in different languages. However, with a closer look, we
can also identify key differences in the designs [4]. For exam-
ple, Java 8 introduced streams in a different way from other
ecosystems, drawing inspiration from Lisp and Smalltalk.

We will discuss the two topics of external versus internal it-
eration as the two dual dataflow representations that appear
in the literature of programming languages and systems, two
terms that appear frequently under different names: external
vs. internal, pull vs. push and data-driven vs demand-driven.

Finally, what is a representation of streams that fully cap-
tures the generality of streaming pipelines and allows desired
optimizations? To understand how the representation affects
implementation and optimization choices, we review past
efforts in deforestation [31] and stream fusion [6].

3 Motivating Example 2: Database Systems
Streaming libraries and query engines in database systems
share many ideas. Both areas offer a high level API, describ-
ing low-level operations over data that needs to be executed
efficiently. A query expression is typically translated by a
query engine into a physical plan of execution. These plans
consist of (physical) operators that consume data stored in
tables, in a streaming fashion using composed iterators over
tuples. A database query optimizer, after cost analysis and re-
ordering of operators, determines the most efficient physical
plan. This plan, akin to a pipeline in streaming libraries, spec-
ifies how to traversing data efficiently without accumulating
intermediate values. Query optimization relies on the same
core idea of a dataflow representation [22]. For example, the
dominant in the 90’s Volcano model [8, 9] implements the
iterator model (external iteration). In 2011, Thomas Neu-
mann [19] proposes an alternative model where “instead
of pulling tuples up, we push them towards the consumer
operators” – which has inspired the prominent framework
for big data, Apache Spark [1].

This work unfolds the history of iteration and streams, fol-
lowing the lineage frommathematics to other sub-disciplines
of computer science. We start from Brouwer’s intuitionistic
analysis. We trace streams as a mathematical abstraction for
the construction of infinite sequences and argue that it was
Brouwer who fully grasped streams. He was handicapped
however by the lack of suitable notation, which only came
to light with coinduction. Tracing these foundations all the
way until the present-time, we lay the ground for an inter-
esting, holistic discussion over the principles behind such a
pervasive topic.

References
[1] Sameer Agarwal, Davies Liu, and Reynold Xin. Apache Spark

as a compiler: Joining a billion rows per second on a lap-
top. https://databricks.com/blog/2016/05/23/apache-spark-as-a-
compiler-joining-a-billion-rows-per-second-on-a-laptop.html, May
2016.

[2] John Backus. Can programming be liberated from the Von Neumann
style?: A functional style and its algebra of programs. Commun. ACM,
21(8):613–641, August 1978.

https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html


All Things Flow Conference’17, July 2017, Washington, DC, USA

[3] John Backus. The history of Fortran I, II, and III. In Richard L.Wexelblat,
editor, History of Programming Languages, pages 25–74. Association
for Computing Machinery, 1978.

[4] Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Clash of
the lambdas. In Proc. 9th International Workshop on Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS ’14, 2014.

[5] Melvin E. Conway. Design of a separable transition-diagram compiler.
Commun. ACM, 6(7):396–408, July 1963.

[6] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:
From lists to streams to nothing at all. In Proc. of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’07, pages
315–326. ACM, 2007.

[7] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-
mation: From data stream to complex event processing. ACM Comput.
Surv., 44(3), June 2012.

[8] Goetz Graefe. Volcano: An extensible and parallel query evaluation
system. IEEE Trans. on Knowl. and Data Eng., 6(1):120–135, February
1994.

[9] Goetz Graefe and William J. McKenna. The Volcano optimizer genera-
tor: Extensibility and efficient search. In Proc. of the 9th International
Conference on Data Engineering, ICDE ’93, pages 209–218. IEEE Com-
puter Society, 1993.

[10] Rich Hickey. A history of Clojure. Proceedings of the ACM on Program-
ming Languages, 4(HOPL), June 2020.

[11] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
A history of Haskell: Being lazy with class. In Proceedings of the
Third ACM SIGPLAN Conference on History of Programming Languages,
HOPL III, pages 12–1–12–55, New York, NY, USA, 2007. Association
for Computing Machinery.

[12] Alan Jeffrey and Julian Rathke. The Lax Braided Structure of Streaming
I/O. In Marc Bezem, editor, Computer Science Logic, volume 12 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 292–
306, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

[13] Gilles Kahn. A Preliminary Theory for Parallel Programs. Research
Report R0006, 1973. Rapport IRIA.

[14] Gilles Kahn. A preliminary theory for parallel programs. 1973.
[15] Peter Landin. Correspondence between Algol 60 and Church’s lambda-

notation: Part i. Commun. ACM, 8(2):89–101, February 1965.

[16] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Ab-
straction mechanisms in CLU. Commun. ACM, 20(8):564–576, August
1977.

[17] John McCarthy. History of LISP. SIGPLAN Not., 13(8):217–223, August
1978.

[18] Doug McIlroy. Advice. https://www.bell-labs.com/usr/dmr/www/
mdmpipe.html, October 1964.

[19] Thomas Neumann. Efficiently compiling efficient query plans for
modern hardware. Proc. VLDB Endow., 4(9):539–550, June 2011.

[20] Allen Newell. Documentation of IPL-V. Commun. ACM, 6(3):86–89,
March 1963.

[21] Allen Newell, editor. IPL-V Programmers Reference Manual. RAND
Corporation, Santa Monica, CA, 1963.

[22] Holger Pirk, Jana Giceva, and Peter R. Pietzuch. Thriving in the
no man’s land between compilers and databases. In 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar,
CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org,
2019.

[23] Dennis M. Ritchie. The evolution of the Unix time-sharing system. In
Jeffrey M. Tobias, editor, Language Design and Programming Method-
ology: Proceedings of a Symposium Held in Sydney, Australia, 10–11
September, 1979, pages 25–35. Springer Berlin Heidelberg, 1980.

[24] Dennis M. Ritchie and Ken Thompson. The Unix time-sharing system.
The Bell System Technical Journal, 57(6):1905–1929, 1978.

[25] J. J. M. M. Rutten. Behavioural differential equations: A coinductive
calculus of streams, automata, and power series. Theoretical Computer
Science, 308(1-3):1–53, 2003.

[26] Gwen Shapira. The future of ETL isn’t what it used to
be. https://www.confluent.io/blog/the-future-of-etl-isnt-what-it-
used-to-be/, June 2017.

[27] Mary Shaw, William A. Wulf, and Ralph L. London. Abstraction
and verification in Alphard: Defining and specifying iteration and
generators. Commun. ACM, 20(8):553–564, August 1977.

[28] Guy Steele. Common LISP: the language. Elsevier, 1990.
[29] Robert Stephens. A survey of stream processing. Acta Informatica,

34(7):491–541, 1997.
[30] William W. Wadge and Edward A. Ashcroft. LUCID, the Dataflow

Programming Language. Academic Press Professional, Inc., 1985.
[31] Philip Wadler. Deforestation: Transforming programs to eliminate

trees. Theor. Comput. Sci., 73(2):231–248, January 1988.

https://www.bell-labs.com/usr/dmr/www/mdmpipe.html
https://www.bell-labs.com/usr/dmr/www/mdmpipe.html
https://www.confluent.io/blog/the-future-of-etl-isnt-what-it-used-to-be/
https://www.confluent.io/blog/the-future-of-etl-isnt-what-it-used-to-be/

	Abstract
	1 Facets of Streams
	2 Motivating Example 1: Streaming APIs
	3 Motivating Example 2: Database Systems
	References

