All Things Flow

HaPoC

2021

Unfolding the History of Streams

Aggelos Biboudis Jeremy Gibbons Oleg Kiselyov

— {,//(::::;;\
Gaudy UNIVERSITY OF v@ »“g\“;&,
R0

| I (188)5
G swisscom %) OXFORD

TOHOKU

Thursday, October 28, 2021
6th International Conference on the History and Philosophy of Computing

1

Philosophy of motion

'whether motion exists as we perceive it, what is It,
and, If it exists, how does it occur.’

* pre-Socratics: Heraclitus (535 BC), Democritus

 Parmenides: motion is only perceived but cannot actually
exist (relativity for motion)

e Zeno of Elea: infinite continuous matter, space (and time)

e Democritus: matter and or space (and time) are discrete
and finite

e Plato, Aristotle, the Sanlun school of Mahayana Buddhism
and Sengzhao (The Immutability of Things-3rd century
CE), Aztecs, ...

2 https://en.wikipedia.org/wiki/Philosophy_of_motion

The goal of this talk

 We lay the ground for a holistic discussion behind
streams of information

* Motivate cross-disciplinary curiosity
e Jarget audience for an upcoming paper:

* an emerging computer science researcher,
* a curious software engineer; and

* a database query optimisation specialist

von Neumann bottleneck

e a CPU
e g store

* a connecting tube that can transmit word-at-a-time
rate between CPU and the store

programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.’

The most significant part of the full citation is as follows:

‘. . . Backus headed a small IBM group in New York City
during the early 1950s. The earliest product of this group’s
efforts was a high-level language for scientific and technical com-

1977 ACM Turing Award Lecture

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. Fortran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.’ ”

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all

POV) SRR [P PR e I TN I P I ST on e 2

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating

John Backus. 1978. Can programming be liberated from the von
Neumann style? a functional style and its algebra of programs.
5 Commun. ACM 21, 8 (Aug. 1978)

s it still applicable”? (2021)

Not word-at-a-time (out-of-order, a stream of instructions,
superscalar, native SIMD, etc)

The data bus bandwidth problem is solved by L1D and L1, L2/L3
caches

64 bits nowadays

Backus was visionary: how many times our mind goes to the array
representation first and we think in terms of processing X-at-a-time
aka the von Neumann machine-style - a style of no equational
reasoning and complex semantics trying to capture effects”

> W ~

Stream—a term historically
used to denote;:

a means of processing lots of data in limited memory;
capturing the semantics of 1/O;

event processing and correlation; and
iteration abstractions.

Conway’s design for a one-pass
COBOL compiler (1963

Design of a Separable

Transition-Diagram Compiler”

MEeLviy E. Conway
Directorate of Computers, USAI
L. (. Hanscom Iield, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) Cosor [2] compilers
must be complicated. The form of the rebuttal is to de-
scribe a high-speed, one-pass, syntax-directed CoBor com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

L. It processes full elective CoBor except for automatic
segmentation and its byproducts, such as those properties
of the avrer verb which are affected by segmentation.
The verbs pEFINE, ENTER, USE and INCLUDE are accessible

4 - 413 R] 1 . s v ¥ LR

to make this design (in which all tables ave accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to Cosor,
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms deseribed were verified on the 5000-word
Burroughs 220 at the Case Institute ol Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CosoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separabilily. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of diserete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and etverywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

8

Melvin E. Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (July 1963),

1. Streams for data processing in sub-
Inear space

(Doug. Mcllroy, 1964, implemented in 1973 by Ken Thomson more info at
http://www.softpanorama. orq/ScriDtinq/Piporama/history.shtml)

ORI
e Cop e
Summary--whatﬁa most "porpant

To put my strongest concerns in ¢ ntishellx
1, -We should have some ways of coupling programs btke
._sarden hose--screw in enother segment when 1t becomes then
‘1t becores necessary to massaege date in esnother way.,
This is the way of IO also, | | |
2. Cur loader should be &ble tc do link-loading end
controlled establishment, |

3¢ Our librery filing scheme should ellow for rather

ot

general indexing, responsibility, generations, data path :
switching, :
4, It should be possible td get private=§ystem corponents

(all routines are syter components)_ggf;5uggering around:with.

M. D. McIlroy
Oct. 1134964

~

http://www.softpanorama.org/Scripting/Piporama/history.shtml

s lvauuannlzano"‘:ﬁ"

e T "““"“"'

__“" T | ""f/\
”‘,,m“ :

S. GORN, |

A Corresponde:nce Between

ALGOL 60 and Church’s Lambda-
Notation: Part I*

By P. J. Laxopint

This paper describes how some of the semantics of ALGOL
60 can be formalized by establishing a correspondence
between expressions of ALGOL 60 and expressions in a
modified form of Church’s A-notation. First a model for com-
puter languages and computer behavior is described, based on
the notions of functional application and functional abstraction,
but also having analogues for imperative language features.
Then this model is used as an “abstract object language" into
which ALGOL 60 is mapped. Many of ALGOL 60's features
emerge as particular arrangements of a small number of struc-
tural rules, suggesting new classifications and generalizations.

The correspondence is first described informally, mainly by
illustrations. The second part of the paper gives a formal
description, i.e. an “abstract compiler” into the “abstract object
language.” This is itself presented in a “purely functional”
notation, that is one using only application and abstraction.

10

2. Capturing the semantics of for-loops and /O

forv:= a step b until ¢, for(y,

d, concatenale (step(a, b, c),
e while p unttlist (d),
do T while(e, p)),
T)

where for, concatenate, step and while are defined as follows.?

rec for(v, S, T) = if = null S then [v := AS;
T
Jor(v, t8, T)]
rec concatenate S = null S — ()
null(hS) — concatenate (tS)
else — k%S :concatenate(t(hS) :tS)
rec step(a, b,¢) = (@ — ¢) X sign(b) > 0— ()
else — a:step(a+b, b, ¢)
p — exwhile(e, p)
else — ()

rec while(e, p)

However, these definitions fail to reflect the sequence of
execution prescribed for Avrcor 60. When interpreted by
the sharing machine they would lead to an attempt to
evaluate the entire control-list before the first iteration of
the loop. The inadequacy of this approach is especially
flagrant in the case of while. We therefore consider for-
list-elements as denoting not lists but a particular kind of
function, called here a siream, that is like a list but has
special properties related to the sequencing of evaluation.
Principally, the items of an intermediately resulting
stream need never exist simultaneously. So streams might
have practical advantages when a list is subjected to a
cascade of editing processes.?

* Following [MEE], an infixed colon indicates prefixing. Thus
“r:L”" is equivalent to ““prefic z L.”

¢ It appears that in stream-transformers we have a functional
analogue of what Conway [12] calls ‘‘co-routines.”

P. J. Landin. 1965. Correspondence between ALGOL 60 and
Church's Lambda-notation: part . Commun. ACM 8, 2 (Feb. 1965)

3. Streams as event
processing and correlation

* Information flow processing: data stream
processing (DSMS) vs complex event processing

systems

 Events (e.q., sensor readings), triggers

11

Lucid (1976)

Expressions only; no control statements

-
(L

nstead of “fetching” data, processing on the flow of data

Network of transformations in applicative fashion
Values of expressions: sequences (streams) only
Inspired by Peter Landin’s ISWIM (19606)

Rfac

where
n=0 fby (n + 1);
fac = 1 fby (fac * (n +

end

I

f
|

12

Spark Streaming, Flink, Kafka
Streams, Samza, ...

* Not far from the ideas of Lucid and Unix Pipes et al.
® Distributed & publish subscribe

® Fault Tolerance (checkpoints)
® Delivery Guarantees (such as at-most-once, exactly-once, at-least-once)
® State management (such as counts on records)

® Performance

13

4. Streams as iteration
apstractions

It we can’t get away from the von-Neumann philosophy lets
attempt to tame the control flow

PL constructs for streaming computations
(full co-routines, yield (semi-co-routines), iterators)

It there is a next element, transtorm and propagate with the
minimal memory footprint

Streaming libraries emerge

14

From Generators to lterators

THE

SYSTEMS

;’:flk)&gj\ MMING

Recursive
rogramming
Techniques

W. H. BURGE

1910-1913 1956 1959 1975 1977

~ Abstraction
Mechanisms in CLU

Barbara Liskov, Alan Snyder,
Russell Atkinson, and Craig Schaffert
Massachusetts Institute of Technology

NECLRSIVE FUNCTIONS OF SYMBOLIC LXPRESSIONS AND THEIR
COMPUTATION BY MACHINE IOT _____
. : X is a new progr to
by John HMcCarthy, MIT Computation Center support the use oflh!tnchommptognm
ion. Work in progr dology has
1. Introducticn led to dt::ﬁ:uhmn Ih:t three Inmz ofn::tncﬁons—
e . ocedural, B -
A programming system called LISP (for LIS Processor) B it pm;;mmw:&;‘x“: o
has been developed for the IBM 704 computer by the Artificial the procedural n s supported well by
. gh the p or
Intelligence Group at MIT. The system was designed to facili- broutine. CLU provides, in addition to proced:
tate experimernts with a propoaed system called the Advice Taker ::;eclonm“ ic mech: Th‘i:‘:m P;;, tlfiusea:fdata
wherehy a machine could be instructed in declarative as well d f to the ab in CLU. By
as imperative sentences and could exhibit "common sense" in z:::s“:dl;':fsrgmmmg °”::""“’ the "““'y““":s
carrying out its instructions. 'the original pz-oplosal for the mt:: and l:l l:n s:'own h:rw b:::ﬂmg én:(y) be
. use an lement al ns. e
Advice Taker 18 ccntaired in reference 1. The main require- library, which permits incremental program
. d '} Wiﬂl p ‘ype hoeks g p -3 A
ment was a programming system for mnipulating expressions at compile time, is alsg discussed.
representing formellized declarative and 1upernt1ve sentences Key Words and Phrases: programming languages,
ao that the Advice Taker system could wake deductlons. : f'“ fypes, data abstrac o, control
CR Culegones. 4.0,4.12, 4.20, 4.22

15

Motivating example 1: Streaming APIs

(or “who controls my stack™?)

Pull<T> source(T[] arr) {
return new Pull<T>() {
boolean hasNext() {..}
T next() {..}
1
}

Pull<Integer> slIt =
source(v).map(i->1*1);

while (sIt. ()) {
el = sIt. (),
/* consume el */

}

16

Push<T> source(T[] arr) {
return k -> {
for (int 1 = 0;
1 < arr.
1++)
k(Carr[i]); };
}

Push<Integer> sFn =
source(v).map(i->1*1);

sFn(el -> /* consume el */);

Motivating Example 2: Database Systems

* \olcano model (Graefe, 1994), pull
e DataPath (Arumugam, 2010), push

 HyPer model (Neumann, 2011), code generation

17

lake-aways

e Conway, Backus, Landin, Mcllroy were visionaries

 Now more than ever we are coming to appreciate
their perspective

 Emerging streaming applications such as 6G/Edge
networks and streaming tensor computations
will rely on the same principles; we lay the ground
for a holistic discussion behind streams

18

Thank youl!

19

All Things Flow

Unfolding the History of Streams (extended abstract)

Aggelos Biboudis Jeremy Gibbons Oleg Kiselyov
Swisscom AG University of Oxford Tohoku University
Switzerland United Kingdom Japan
Abstract Conway’s design [5] for a one-pass COBOL compiler, whose

Heraclitus observed that all things flow and nothing remains
still; “you cannot step into the same river twice”. So what is a
stream in computer science, and where did this notion come
from? We divide streaming abstractions into four categories:
a) as a means of processing lots of data in limited memory;
b) as event processing and correlation; c) to capture the se-
mantics of I/O; and d) as iteration abstractions. Following
these four axes, we unfold the history of streams, and give
an overview of how this abstraction started to come into
existence as a mainstream programming language facility.
Our goal is to present briefly the related concepts through lit-
erature review, drawing connections between programming
language features and technologies. This discussion will be
of interest to the young computer science researcher, the
curious software engineer, and the grizzled database query
optimization specialist.

modules are like segments of a hose.

This massaging - analyzing and transforming — large
amounts of data is the domain of the traditional database
management (see §3), which has evolved into so-called data
analytics: performing Extract-Transform-Load jobs (ETL)
over centralized architectures called data lakes. ETL consists
of moving data from heterogeneous sources (E) to other
targets (L), after several transformation steps (T). Streams
are promoted to first-class status [26].

Streams as event processing and correlation. Informa-
tion flow processing is the other class of stream processing
applications. It is defined as “processing continuously flow-
ing data from geographically distributed sources at unpre-
dictable rates to obtain timely responses to complex queries”
[7]. Its characteristic example is complex event processing:
given incoming notifications of events observed by sources
(e.g., sensor readings), “filter and combine such notifications

c1ea 1 1

