Streams a la carte: Extensible Pipelines with
Object Algebras

Aggelos Biboudis!, Nick Palladinos?, George Fourtounis!, and
Yannis Smaragdakis?!

1 Dept. of Informatics and Telecommunications
University of Athens, Greece
{biboudis,gfour,smaragd}@di.uoa.gr

2 Nessos Information Technologies S.A.
Athens, Greece
npal@nessos.gr

—— Abstract

Streaming libraries have become ubiquitous in object-oriented languages, with recent offerings
in Java, C#, and Scala. All such libraries, however, suffer in terms of extensibility: there is no
way to change the semantics of a streaming pipeline (e.g., to fuse filter operators, to perform
computations lazily, to log operations) without changes to the library code. Furthermore, in
some languages it is not even possible to add new operators (e.g., a zip operator, in addition to
the standard map, filter, etc.) without changing the library.

We address such extensibility shortcomings with a new design for streaming libraries. The
architecture underlying this design borrows heavily from Oliveira and Cook’s object algebra
solution to the expression problem, extended with a design that exposes the push/pull character
of the iteration, and an encoding of higher-kinded polymorphism. We apply our design to Java
and show that the addition of full extensibility is accompanied by high performance, matching
or exceeding that of the original, highly-optimized Java streams library.

1998 ACM Subject Classification D.2.2. Software libraries, D.1.5 Object-oriented Programming,
D.3.3 Language Constructs and Features

Keywords and phrases object algebras; streams; extensibility; domain-specific languages; ex-
pression problem; library design

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2015.591

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.1.1.9

1 Introduction

Recent years have seen the introduction of declarative streaming libraries in modern object-
oriented languages, such as Java, C#, or Scala. Streaming APIs allow the high-level
manipulation of value streams (with each language employing slightly different terminology)
with functional-inspired operators, such as filter, or map. Such operators take user-defined
functions as input, specified via local functions (lambdas). The Java example fragment below
shows a “sum of even squares” computation, where the even numbers in a sequence are
squared and summed. The input to map is a lambda, taking an argument and returning its
square. Similarly, the input to filter is a lambda, determining whether its argument is even.

© Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis;
37 licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 591-613

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.591
http://dx.doi.org/10.4230/DARTS.1.1.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

592

Streams a la carte: Extensible Pipelines with Object Algebras

int sum = IntStream.of (v)
.filter(x -> x % 2 == 0)
.map(x -> x * x)

.sum();

Our work is based on the key observation that streaming operators introduce a separate
(domain-specific) sub-language that is interpreted during program run-time. This observation
is inspired by the architecture of the Java 8 streams library, which aggressively manipulates
the streaming pipeline, as if the library calls were syntax nodes of an interpreted program. A
pipeline of the form “of(...).filter(...).map(...).sum()” is formed with sum being at the
outermost layer, i.e., right-to-left as far as surrounding code is concerned. However, when the
terminal operator (sum) is reached, it starts evaluation over the stream data by eventually
invoking an iteration method in operator of. It is this method that drives iteration and calls
the operators left-to-right. The result of such manipulation is significant performance gains.
The Java 8 streams implementation effectively changes external (pull-style) iteration into
internal (push-style). Recent benchmarking studies [2] report that, with this change, the
library avoids a number of indirect calls and allows much better downstream optimizations.

The problem with existing library designs is that there is no way to alter the semantics
of a streaming pipeline without changing the library itself. This is detrimental to library
extensibility. For instance, a user may want to extend the library in any of the ways below:

Create push-vs-pull versions of all operators.

Create a logging interpretation of a pipeline, which logs actions and some intermediate

results.

Create an interpretation computing asynchronous versions of an evaluation (futures-of-

values instead of values).

Create an optimizing interpretation that fuses together operators, such as neighboring

filters or maps.

Additionally, the current architecture of streaming libraries prevents the introduction
of new operators, precisely because of the inflexible way that evaluation is performed. As
discussed above, Java streams introduce push-style iteration by default. This approach
would yield semantic differences from pull-style iteration if more operators, such as zip, were
added to the library. Furthermore, in some languages the addition of new operators requires
editing the library code or using advanced facilities: in Java such addition is only possible by
changing the library itself, while in C# one needs to use extension methods, and in Scala
one needs to use implicits.

In our work, we propose a new design and architecture for streaming libraries for Java-like
languages, to maximize extensibility without sacrificing on any other axis. Our approach
requires no language changes, and only leverages features found across all languages examined
— i.e., standard parametric polymorphism (generics).

Underlying our architecture is the object algebra construction of Oliveira and Cook
[13] and Oliveira et al. [14]. This is combined with a library design that dissociates the
push or pull nature of iteration from the operators themselves, analogously to the recent
“defunctionalization of push arrays” approach in the context of Haskell [22].

Based on this architecture, we have implemented an alternative stream library for Javal.
In our library, the pipeline shown earlier gets inverted and parameterized by an alg object,
which designates the intended semantics. For instance, a plain Java-streams-like evaluation
would be written:

! http://biboudis.github.io/streamalg

http://biboudis.github.io/streamalg

A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis

PushFactory alg = new PushFactory();
int sum = Id.prj(
alg.sum(
alg.map(x -> x * x,
alg.filter(x -> x % 2 == 0,
alg.source(v))))) .value;

(The 1d.prj and value elements, above, are part of a standard pattern for simulating
higher-kinded polymorphism with plain generics. They can be ignored for the purposes of
understanding our architecture. We discuss the pattern in detail in Section 4.)

Although the above fragment is slightly longer than the original, its elements are highly
stylized. The user can adapt the code to other pipelines with trivial effort, comparable to
that of the original code fragment in Java 8 streams. Most importantly, if the user desired
a different interpretation of the pipeline, the only necessary change is to the first line of
the example. An interpretation that has pull semantics and fuses operators together only
requires a new definition of alg:

FusedPullFactory alg = new FusedPullFactory();
. // same as earlier

Such new semantics can be defined externally to the library itself. Adding
FusedPullFactory requires no changes to the original library code, allowing for semantics
that the library designer had not foreseen.

This highly extensible design comes at no cost to performance. The new architecture
introduces no extra indirection and does not prevent the JIT compiler from performing any
optimization. This is remarkable, since current Java 8 streams are designed with performance
in mind (cf. the earlier push-style semantics). As we show, our library matches or exceeds
the performance of Java 8 streams.

Overall, our work makes the following contributions:

We introduce a new design and architecture? for streaming libraries and argue for its

benefits, in terms of extensibility and low adoption barrier (i.e., use of only standard

language features), all without sacrificing performance.

We demonstrate extensibility and provide several alternative semantics for streaming

pipelines, all in an actual, publicly available implementation.

We provide an example of the use of object algebras in a real-world, performance-critical

setting.

2 Background

We next discuss streaming libraries in Java, Scala, C#, and F#. We also introduce push/in-
ternal vs. pull/external iteration, via reference to specific facilities in these libraries.

2.1 Java

Java is a relative newcomer among streaming facilities, yet features a library that has received
a lot of engineering attention. We already saw examples of the Java API for streaming in the
introduction. In terms of implementation, the Java library follows a scheme that is highly
optimized and fairly unique among statically typed languages.

2 We follow the textbook distinction that “design” refers to how elements are separated into modules,
while “architecture” refers to components-and-connectors, i.e., the machinery determining how elements
of the design are composed. Our work shows a new library design, albeit one that would not be possible
without a different underlying architecture.

593

ECOOP’15

594

Streams a la carte: Extensible Pipelines with Object Algebras

In the Java 8 declarative stream processing API, operators fall into two categories:
intermediate (always lazy — e.g., map and filter) and terminal (which can produce a value or
perform side-effects — e.g., sum and reduce). For concreteness, let us consider the pipeline
below. The expression (serving as a running example in this section) calculates the sum of
squares of all values in an array of doubles.

public double sum0fSquaresSeq(double[] v) {
double sum = DoubleStream.of (v)
.map(d -> d * d)
.sum() ;
return sum;

}

The code first creates a sequential, ordered Stream of doubles from an array that holds
all values. The calls map and sum are an intermediate and a terminal operation respectively.
The map operation returns a Stream and it is lazy. It simply declares the transformation that
will occur when the stream will be traversed. This transformation is a stateless operation
and is declared using a lambda function. The sum operation needs all the stream processed
up to this point, in order to produce a value; this operation is eager and it is effectively the
same as reducing the stream with the lambda (x,y) -> x+y.

Implementation-wise, the (stateless or stateful) operations on a stream are represented
by objects chained together sequentially. A terminal operation triggers the evaluation of the
chain. In our example, if no optimization were to take place, the sum operator would retrieve
data from the stream produced by map, with the latter being supplied the necessary lambda
expression. This traversing of the elements of a stream is realized through the Spliterator
interface. This interface offers an API for traversing and partitioning elements of a source.
A key method in this interface is forEachRemaining with signature

void forEachRemaining(Consumer<? super T> action);

Normally, for the general case of standard stream processing, the implementation of
forEachRemaining will internally call methods hasNext and next to traverse a collection, as
well as accept to apply an operation to the current element. Thus, three virtual calls per
element will occur.

However, stream pipelines, such as the one in our example, can be optimized. For the
array-based Spliterator, the forEachRemaining method performs an indexed-based, do-while
loop. The entire traversal is then transformed: instead of sum requesting the next element
from map, the pipeline operates in the inverse order: map pushes elements through the accept
method of its downstream Consumer object, which implements the sum functionality. (A
Consumer in Java is an operation that accepts an argument and returns no result.) In this
way, the implementation eliminates two virtual calls per step of iteration and effectively
uses internal (push-style) iteration, instead of external (pull-style). This also enables further
optimizations by the JIT compiler, often resulting in fully fused code.

The following (simplified for exposition) snippet of code is taken from the
Spliterators.java source file of the Java 8 library and demonstrates this special handling,
where a holds the source array and i indexes over its length:

do { consumer.accept(alil); } while (++i < hi);

The push-style iteration can be seen in this code. Each of the operators applicable to
a stream needs to support this inverted pattern by supplying an accept operation. That
operation, in turn, will call accept on whichever Consumer<T> may be downstream. The
consumer of a push stream will provide a consumer function that is instantiated into the

A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis

iteration block of the stream.?

The dual of a push stream is a pull stream. Every combinator of a pull stream will build
an iterator that will propagate some effect (e.g., apply a function £ if this combinator is map)
to each next element. C#, F# and Scala implement deferred execution over pipelines (all
described in their respective sections) as pull streams. Java, on the other hand, supports
push streams by default. Java additionally provides pull capabilities through the iterator
combinator — we shall see in Section 3 why this facility is not equivalent to full pull-style
iteration functionality.

2.2 Scala

Scala is an object-functional programming language for the JVM. Scala has a rich object
system offering traits and mixin composition. As a functional language, it has support for
higher-order functions, pattern matching, algebraic data types, and more. Since version 2.8,
Scala comes with a rich collections library offering a wide range of collection types, together
with common functional combinators, such as map, filter, flatMap, etc. The most general
streaming API for Scala is that for lazy transformations of collections, which also avoids the
creation of intermediate, allocated results.

To achieve lazy processing, one has to use the view method on a collection. This method
wraps a collection into a SeqView. The following example illustrates the use of view for
performing such transformations lazily:

def sumOfSquareSeq (v : Array[Double]) : Double = {
val sum : Double = v
.view
.map(d => d * d)
.sum
sum

}

Ultimately, SeqView extends Iterable[A]. SeqView acts as a factory for iterators. As an
example, we can demonstrate the common map function by mapping the transformation
function to the source’s Iterable iterator:

def map[T, U] (source: Iterable[T], f: T => U) = new Iterable[U] {

def iterator = source.iterator map f

}
The Iterator’s map function can then be implemented by delegation to the source iterator:

def map[T, U] (source: Iterator[T], f: T => U): Iterator[U] = new Iterator[U] {
def hasNext = source.hasNext
def next() = f(source.next())

}

Note that there are 3 virtual calls (next, hasNext, £) per element pointed by the iterator.

This is standard pull-style iteration, as in the unoptimized Java case, discussed earlier. Each
operator has to “request” elements from the one supplying its input, rather than having a
push-style pattern, with the producer calling the consumer directly.

3 Intuitively, in internal (push-style) iteration, there is no co-routining between the loop and the consumer.
The latter is fully under the control-flow of the former. (The call consuming data returns — with none
of its local data escaping — before the next data are produced.)

595

ECOOP’15

596

Streams a la carte: Extensible Pipelines with Object Algebras

2.3 C#/F#

C# is a modern object-oriented programming language targeting the .NET framework. An
important milestone for the language was the introduction of several features in C# 3.0
in order to enable a more functional style of programming. These new features, under the
umbrella of LINQ [12, 11], can be summarized as support for lambda expressions and function
closures, extension methods, anonymous types and special syntax for query comprehensions.
All of these enable the creation of new functional-style APIs for the manipulation of collections.

F+# is a modern .NET functional-first programming language based on OCaml, with
support for object-oriented programming, based on the .NET object system.

In C# we can program data streams as fluent-style method calls:
nums.Select(x => x * x).Sum();
or with the equivalent query comprehension syntactic sugar:

(from x in nums
select x * x).Sum();

In F#, stream manipulation can be expressed as a direct pipeline of various combinators.

nums |> Seq.map (fun x -> x * Xx)
|> Seq.sum

C# and F# have near-identical operational behaviors and both C# methods (Select,
Where, etc.) and F# combinators (Seq.map, Seq.filter, etc.) operate on IEnumerable<T>
objects. The IEnumerable<T> interface can be thought of as a factory for creating iterators,
i.e., objects with MoveNext and Current methods. The lazy nature of the iterators allows
the composition of an arbitrary number of operators without worrying about intermediate
materialization of collections between each call. For instance, the Select method returns an
IEnumerable object that produces the iterator below:

class SelectEnumerator<T, R> : IEnumerator<R> {

private readonly IEnumerator<T> inner;

private readonly Func<T, R> func;

public SelectEnumerator (IEnumerator<T> inner,

Func<T, R> func) {

this.inner = inner;
this.func = func;

}

bool MoveNext() { return inner.MoveNext(); }

R Current { get { return func(inner.Current); } }

}

SelectEnumerator implements the IEnumerator<R> interface and delegates the MoveNext
and Current calls to the inner iterator. From a performance point of view, it is not difficult
to see that there is virtual call indirection between the chained enumerators. We have 3
virtual calls (MoveNext, Current, func) per element per iterator. Iteration is similar to Scala
or to the general, unoptimized Java iteration: it is an external (pull-style) iteration, with
each consumer asking the producer for the next element.

3 Stream Algebras

We next describe our stream library architecture and its design elements, including separate
push and pull semantics, enhanced interpretations of a pipeline, optimizations and more.

A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis

Stream<Long> s = Stream.iterate(OL, i -> i + 2);

Iterator<Long> iterator = Stream
.of (v)
.flatMap(x -> s.map(y -> x * y))
.iterator();

iterator.hasNext () ;

Figure 1 Infinite streams and flatMap.

3.1 Motivation

The goal of our work is to offer extensible streaming libraries. The main axis of extensibility
that is not well-supported in past designs is that of pluggable semantics. In existing streaming
libraries there is no way to change the evaluation behavior of a pipeline so that it performs,
e.g., lazy evaluation, augmented behavior (e.g., logging), operator fusing, etc. Currently,
the semantics of a stream pipeline evaluation is hard-coded in the definition of operators
supplied by the library. The user has no way to intervene.

The original motivation for our work was to decouple the pull- vs. pull-style iteration
semantics from the library operators. As discussed in Section 2, Java 8 streams are push-style
by default, while Scala, C#, and F# streams are pull-style. A recent approach in the
context of Haskell [22] performs a similar decoupling of push- vs. pull-style semantics through
defunctionalization of the interface, yet affords no other extensibility.

Although Java 8 streams allow some pull-style iteration, they do not support fully
pluggable pull-style semantics. The current pull-style functionality is via the iterator()
combinator. This combinator is a terminal operator and adapts a push-style pipeline into
an iterator that can be used via the hasNext/next methods. This is subtly different from
changing the semantics of an entire pipeline into pull-style iteration.

For instance, the flatMap combinator takes as input a function that produces streams,
applies it to each element of a stream, and concatenates the resulting streams. In a true
pull-style iteration, it is not a problem if any of the intermediate streams happen to be
infinite (or merely large): their elements are consumed as needed. This is not the case when
a Java 8 flatMap pipeline is made pull-style with a terminal iterator call. Figure 1 shows a
simple example. Stream s is infinite: it starts with zero and its step function keeps adding 2
to the previous element. The flatMap application produces modified copies of the infinite
stream s, with each element multiplied by those of a finite array, v. Evaluation does not end
until an out-of-memory exception is raised.*

Our library design removes such issues, allowing pipelines with pluggable semantics.

Although the separation of pull- and push-style semantics was our original motivation, it
soon became evident that an extensible architecture offers a lot more options for semantic
extensibility of a stream pipeline. We discuss next the new architecture and several semantic
additions that it enables.

4 This is a known issue, which we have discussed with Java 8 streams implementors, and does not seem
to have an easy solution. The underlying cause is that the type signatures of operators (e.g., of or
flatMap) encode termination conditions as return values from downstream operators. For flatMap
to avoid confusing the conditions from its parameter stream (result of map in this example) and its
downstream (iterator in the example) it needs to evaluate one more element of the parameter stream
than strictly needed, and that element happens to be infinite in the example.

597

ECOOP’15

598

Streams a la carte: Extensible Pipelines with Object Algebras

3.2 Stream as Multi-Sorted Algebras

Our extensible, pluggable-semantics design of the library is implemented using an architecture
based on object algebras. Object algebras were introduced by Oliveira and Cook [13] as a
solution to the expression problem [25]: the need to have fully extensible data abstraction
while preserving the modularity of past code and maintaining type safety. The need for
extensibility arises in two forms: adding new data variants and adding new operations.
Intuitively, an object algebra is an interface that describes method signatures for creating
syntax nodes (data variants). An implementation of the algebra offers semantics to such
syntax nodes. Thus, new data variants (syntax nodes) are added by extending the algebra,
while new operations (semantics) correspond to different implementations of the algebra.

We next present the elements of the object algebra approach directly in our streaming
domain.

In our setting, the set of variants to extend are the different combinators: map, take
(called 1imit in Java), filter, flatMap, etc. These are the different cases that a semantics
of stream evaluation needs to handle. The “operations” on those variants declare the
manipulation/transformation that will be employed for all produced data items. We will use
the term “behavior” for such operations.

Our abstraction for streams is a multi-sorted algebra. The two sorts that can be evolved
as a family are the type of the stream, which can hold some type of values, and the type of
the value produced by terminal operations. The signature of the former is called StreamAlg
while the latter is ExecStreamAlg. The Exec* prefix is used to denote that this is the algebra
for the types that perform execution. The algebras are expressed as generic interfaces and
classes implementing these interfaces are factories. In our multi-sorted algebra these two
distinct parts are connected with the subtyping relation and classes that implement the two
interfaces can evolve independently, to form various combinations.

Intermediate Combinators. Our base interface, StreamAlg, is shown below.

interface StreamAlg<C<_>> {
<T> C<T> source(T[] array);
<T, R> C<R> map(Function<T, R> f, C<T> s);
<T, R> C<R> flatMap(Function<T, C<R>> f, C<T> s);
<T> C<T> filter(Predicate<T> f, C<T> s);

As can be seen, StreamAlg is parameterized by a unary type constructor that we denote
by the c<_> syntax. This is a device used for exposition. That is, for the purposes of our
presentation we assume type-constructor polymorphism (a.k.a. higher-kinded polymorphism):
the ability to be polymorphic on type constructors. This feature is not available in Java
(although it is in, e.g., Scala).® In our actual implementation, type-constructor polymorphism
is emulated via a standard stylized construction, which we explain in Section 4.

Every combinator of streams is also a constructor of the corresponding algebra; it returns
(creates) values of the abstract set. Each constructor of the algebra creates a new intermediate
node of the stream pipeline and, in addition to the value of the previous node (parameter s)
that it will operate upon, it takes a functional interface. (A functional interface has exactly
one abstract method and is the type of a lambda in Java 8.)

5 The original object algebras work of Oliveira and Cook [13] did not require type-constructor polymorph-
ism for its examples. Later work by Oliveira et al. [14] used type-constructor polymorphism in the
context of Scala.

A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis

class PushFactory implements StreamAlg<Push> {
public <T> Push<T> source(T[] array) {
return k —> {
for(int i=0 ; i < array.length ; i++){
k.accept (array[i]);
}
};
}

public <T, R> Push<R> map(Function<T, R> mapper, Push<T> s) {
return k -> s.invoke(i -> k.accept (mapper.apply(i)));
}
}

Figure 2 Example of a PushFactory.

Terminal Combinators. The ExecStreamAlg interface describes terminal operators, which
trigger execution/evaluation of the pipeline. These operators are also parametric. They can
return a scalar value or a value of some container type (possibly parameterized by some other
type). For instance, count can return Long, hence having blocking (synchronous) semantics,
or it can return Future<Long>, to offer asynchronous execution.

interface ExecStreamAlg<E<_>, C<_>> extends StreamAlg<C> {

<T> E<Long> count(C<T> s);
<T> E<T> reduce(T identity, BinaryOperator<T> acc, C<T> s);

Once again, this algebra is parameterized by unary type constructors and it also carries
as a parameter the abstract stream type that it will pass to its super type, StreamAlg.

3.3 Adding New Behavior for Intermediate Combinators

We next discuss the extensibility that our design affords, with several examples of different
interpretation semantics.

Push Factory. The first implementation in our library is that of a push-style interpretation
of a streaming pipeline, yielding behavior equivalent to the default Java 8 stream library.

Push-style streams implement the StreamAlg<Push> interface (where Push is the container
or carrier type of the algebra). All combinators return a value of some type Push<...> ie., a
type expression derived from the concrete constructor Push. Our PushFactory implementation,
restricted to combinators source and map, is shown below.

A Push<...> type is the embodiment of a push-style evaluation of a stream. It carries a
function, which can be composed with others in a push-y manner. In the context of Java, we
want to be able to assign lambdas to a Push<...> reference. Therefore we declare Push<x>
as a functional interface, with a single method, void invoke(Consumer<T>). The Consumer<T>
argument is itself a lambda (with method name accept) that takes as a parameter an item
of type T and returns void. This consumer can be thought of as the continuation of the
evaluation (hence the conventional name, k). The entire stream is evaluated as a loop, as
shown in the implementation of the source combinator, above. source returns a lambda that
takes as a parameter a Consumer<T>, iterates over the elements of a source, s, and passes
elements one-by-one to the consumer.

Similarly, the map operator returns a push-stream embodiment of type Push<...>. This
stream takes as argument another stream, s, such as the one produced by source, and

599

ECOOP’15

600

Streams a la carte: Extensible Pipelines with Object Algebras

invokes it, passing it as argument a lambda that represents the map semantics: it calls its
continuation, k, with the argument (i.e., the element of the stream) as transformed by the
mapping function. This pattern follows a similar continuation-passing-style convention as in
the original Java 8 streams library. (As discussed in Section 2.1, this reversal of the pipeline
flow enables significant VM optimizations and results in faster code.)

The next combinator, whichever it is, will consume the transformed elements of type
R. The implementation of other combinators, such as filter and flatMap, follows a similar
structure.

Pull Factory. As discussed earlier, Java 8 streams do not have a full pull-style iteration
capability. They have to fully realize intermediate streams, since the pull semantics is
implemented as a terminal combinator and only affects the external behavior of an entire
pipeline. (As we will see in our experiments of Section 6, this is also a source of inefficiency
in practice.) Therefore, the first semantic addition in our library is pull-style streams.

Pull-style streams implement the StreamAlg<Pull> interface. In this case Pull<T> is an
interface that represents iterators, by extending the Iterator<T> interface. For pull semantics,
each combinator returns an anonymous class — one that implements this interface by providing
definitions for the hasNext and next methods. In Figure 3 we demonstrate the implementation
of the source and map operators, which are representative of others.

We follow the Java semantics of iterators (the effect happens in hasNext). Each element
that is returned by the next method of the map implementation is the transformed one, after
applying the needed mapper lambda to each element that is retrieved. The retrieval is
realized by referring to the s object, which carries the iterator of the previous pipeline step.

Note how dissimilar the Push and Pull interfaces are (a lambda vs. an iterator with next
and hasNext). Our algebra, StreamAlg<C<_» is fully agnostic regarding C, i.e., whether it is
Push or Pull.

Log Factory. With a pluggable semantics framework in place, we can offer several alternative
interpretations of the same streaming pipeline. One such is a logging implementation. The
log factory expresses a cross-cutting concern, one that interleaves logging capabilities with
the actual execution of the pipeline. Although the functionality is simple, it is interesting
in that it takes a mixin form: it can be merged with other semantics, such as push or pull
factories. The code for the LogFactory, restricted to the map and count operators, is shown
in Figure 4.

The code employs a delegation-based structure, one that combines an implementation of
an execution algebra (of any behavior for intermediates and orthogonally of any behavior for
terminal combinators) with a logger. We parameterize LogFactory with an ExecStreamAlg
and then via delegation we pass the intercepted lambda as the mapping lambda of the
internal algebra. For example, if the developer has authored a pipeline alg.reduce(OL,
Long::sum, alg.map(x -> x + 2, alg.source(v))), then, instead of using an ExecPushFactory
that will perform push-style streaming, she can pass a LogFactory<>(new ExecPushFactory())
effectively mixing a push factory with a log factory.

Fused Factory. An interpretation can also apply optimizations over a pipeline. The op-
timization is applied automatically, as long as the user chooses an evaluation semantics
that enables it. This is effected with an extension of a PullAlgebra that performs fusion
of adjacent operations. Using a FusedPullFactory the user can transparently enable fusion

A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis

class PullFactory implements StreamAlg<Pull> {
public <T> Pull<T> source(T[] array) {
return new Pull<T>() {
final int size = array.length;
int cursor = 0;
public boolean hasNext() { return cursor != size; }
public T next() {
if (cursor >= size)
throw new NoSuchElementException() ;
return array[cursor++];
}
¥s
}
public <T, R> Pull<R> map(Function<T, R> mapper, Pull<T> s) {
return new Pull<R>() {
R next = null;
public boolean hasNext() {
while (s.hasNext()) {
T current = s.next();
next = mapper.apply(current);
return true;
}
return false;
}
public R next() {
if (next != null || this.hasNext()) {
R temp = this.next;
this.next = null;
return temp;
} else throw new NoSuchElementException();
}
s
}
}

Figure 3 Example of PullFactory functionality.

for multiple filter and multiple map operations. In this factory, the two combinators are
redefined and, instead of creating values of an anonymous class of type Pull, they create
values of a refined version of the Pull type. This gives introspection capabilities to the map
and filter operators. They can inspect the dynamic type of the stream that they are applied
to. If they operate on a fusible version of map or on a fusible version of filter then they

proceed with the creation of values for these extended types with the composed operators.

We elide the definition of the factory, since it is lengthy.

3.4 Adding New Combinators

Our library design also allows adding new combinators without changing the library code.
In case we want to add a new combinator, we first have to decide in which algebra it
belongs. For instance, we have added a take combinator without disturbing the original
algebra definitions. A take combinator has signature C<T> take(int n) so it clearly belongs
in StreamAlg. We have to implement the operator for both push and pull streams, but we
want to allow the possibility of using take with any ExecStreamAlg. Our approach again
uses delegation, much like the LogFactory, shown earlier in Figure 4. We create a generic
TakeStreamAlg<E, C> interface and orthogonally we create an interface ExecTakeStreamAlg<E,
C> that extends TakeStreamAlg<C> and ExecStreamAlg<E, C>. In the case of push streams,
ExecPushWithTakeFactory<E> implements the interface we created, where C = Push, by defining

601

ECOOP’15

602

Streams a la carte: Extensible Pipelines with Object Algebras

class LogFactory<E<_>, C<_>> implements ExecStreamAlg<E, C> {
ExecStreamAlg<E, C> alg;

<T, R> C<R> map(Function<T, R> mapper, C<T> s) {
return alg.map(i -> {
System.out.print("map: " + i.toString());
R result = mapper.apply(i);
System.out.println(" -> " + result.toString());
return result;
}, s8);
}

public <T> E<Long> count(C<T> s) {
return alg.count(s);

}
}

Figure 4 Example of LogFactory functionality.

the take operator. All other operators for the push case are inherited from the PushFactory
supertype. The ExecPushWithTakeFactory<E> factory is parameterized by ExecStreamAlg<E,
Push> alg. Generally, the factory can accept as parameter any algebra for terminal operators.

3.5 Adding New Behavior for Terminal Combinators

Future Factory. Our library design also enables adding new behavior for terminal combin-
ators. The most interesting example in our current library components is that of
FutureFactory: an interpretation of the pipeline that triggers an asynchronous computation.
Instead of returning scalar values, a FutureFactory parameterizes ExecStreamAlg with a con-
crete type constructor, Future<x>.% (This is in much the same way as, e.g., a PushFactory
parameterizes StreamAlg with type constructor Push, in Figure 2.) Future is a type that
provides methods to start and cancel a computation, query the state of the computation,
and retrieve its result.

FutureFactory defines terminal operators count and reduce, to return Future<Long> and
Future<T> respectively. Intermediate combinators are defined similarly to the terminal ones,
but are omitted from the listing.

4 Emulating Type-Constructor Polymorphism

As noted earlier, our presentation so far was in terms of type-constructor polymorphism,
although this is not available in Java. For our implementation, we simulate type-constructor
polymorphism via a common technique. The same encoding has been used in the imple-
mentation of object-oriented libraries — e.g., in type classes for Java [6] and in finally tagless
interpreters for C# [10]. The technique was also recently presented formally by Yallop and
White [27], and used to represent higher-kinded polymorphism in OCaml.

In this encoding, for an unknown type constructor ¢<_>, the application C<T> is represented
as App<t, T>, where T is a Java class and t is a marker class that identifies the type constructor
€. For example, our stream algebra shown in Section 3.2 is written in plain Java as follows:

6 That is, Future is our own class, which extends the Java library class FutureTask, and not to be
confused with the Java library java.util.concurrent.Future interface.

A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis

class ExecFutureFactory<C<_>> implements ExecStreamAlg<Future, C> {
private final ExecStreamAlg<Id, C> execAlg;
public <T> Future<Long> count(C<T> s) {
Future<Long> future = new Future<>(() -> {
return execAlg.count(s).value;
1)
future.run() ;
return future;
}
public <T> Future<T> reduce(T identity,
BinaryOperator<T> accumulator,
C<T> s) {
Future<T> future = new Future<>(() -> {
return execAlg.reduce(identity, accumulator, s).value;
1)
future.run();
return future;

Figure 5 Count and reduce operators in FutureFactory.

public interface App<C, T> { }

public interface StreamAlg<C> {
<T> App<C, T> source(T[] array);
<T, R> App<C, R> map(Function<T, R> f, App<C, T> app);
<T, R> App<C, R> flatMap(Function<T, App<C, R>> f, App<C, T> app);
<T> App<C, T> filter(Predicate<T> f, App<C, T> app);

A subtle point arises in this encoding: given C, how is t generated? This class is called
the “brand”, as it tags the application so that it cannot be confused with applications of
other type constructors; this brand should be extensible for new types that may be added
later to the codebase. This means that (a) t should be a fresh class name, created when C is

declared; and (b) there should be a protocol to ensure that the representation is used safely.

Brand freshness. The freshness of the brand name is addressed by declaring t as a nested
class inside the class of the new type constructor. Since t exists at a unique point in the
class hierarchy, no other class may declare a brand that clashes with it, and its declaration
happens at the same time as C is declared. In the following, we see the encoding of the type
constructor Pull<T>, with its t brand:

public interface Pull<T> extends App<Pull.t, T>, Iterator<T> {

static class t { }
static <A> Pull<A> prj(App<Pull.t, A> app) { return (Pull<A>) app; }

We see that the encoding above has an extra method prj, which does a downcast of
its argument. The OCaml encoding of Yallop and White needs two methods inj and prj
(for “inject” and “project”) that cast between the concrete type and the instantiation of
the