
A Practical Unication of
Multi-stage Programming and Macros

Nicolas Stucki
EPFL

Switzerland
nicolas.stucki@epfl.ch

Aggelos Biboudis
EPFL

Switzerland
aggelos.biboudis@epfl.ch

Martin Odersky
EPFL

Switzerland
martin.odersky@epfl.ch

Abstract
Program generation is indispensable. We propose a novel
unication of two existing metaprogramming techniques:
multi-stage programming and hygienic generative macros.
The former supports runtime code generation and execution
in a type-safe manner while the latter oers compile-time
code generation.
In this work we draw upon a long line of research on

metaprogramming, starting with Lisp, MetaML and MetaO-
Caml. We provide direct support for quotes, splices and top-
level splices, all regulated uniformly by a level-counting
Phase Consistency Principle. Our design enables the construc-
tion and combination of code values for both expressions
and types. Moreover, code generation can happen either at
runtime à la MetaML or at compile time, in a macro fashion,
à la MacroML.

We provide an implementation of our design in Scala and
we present two case studies. The rst implements the Hid-
den Markov Model, Shonan Challenge for HPC. The second
implements the staged streaming library Strymonas.

CCS Concepts • Software and its engineering → Lan-
guage features; Macro languages;

Keywords Macros, Multi-stage programming, Scala

ACM Reference Format:
Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A
Practical Unication of Multi-stage Programming and Macros. In
Proceedings of the 17th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE ’18), No-
vember 5–6, 2018, Boston, MA, USA. ACM, New York, NY, USA,
14 pages. hps://doi.org/10.1145/3278122.3278139

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for prot or commercial advantage and that copies bear
this notice and the full citation on the rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specic permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6045-6/18/11. . . $15.00
hps://doi.org/10.1145/3278122.3278139

1 Introduction
Generative programming [9] is widely used in scenarios such
as code conguration of libraries, code optimizations [44]
and DSL implementations [8, 42]. There are various kinds
of program generation systems ranging from completely
syntax-based and unhygienic, to fully typed [36]. Modern
macro systems, like Racket’s, can extend the syntax of the
language [11]. On the ipside, other program generation
systems may provide a xed set of constructs oering staged
evaluation [10, 16] like MetaML [39] and MetaOCaml [6, 20,
21, 23].
The latter techniques established a new programming

paradigm, called Multi-stage Programming (MSP) oering
a principled, well-scoped and type-safe approach to code
generation [38]. Programmers make use of two constructs,
quote and splice, to delay and compose representations of
expressions. Conceptually, users are able to manually indi-
cate which parts of their program are dynamic and which
static. Even though this technique is inspired by advance-
ments in partial evaluation [26] it proved useful to have it in
a programming language with rst-class support. Part of the
power of this programming model, comes from a regulation
mechanism that attributes levels to terms [37]; these systems
are type-safe in a modular way (type checking the genera-
tor ensures the validity of the generated code). Nowadays,
gaining inspiration from MetaML and MetaOCaml, many
programming languages provide support for similar mecha-
nisms such as F#, Haskell (Template Haskell [34] and later
Typed Template Haskell [15]), Converge [43] and others.
While MSP is primarily a metaprogramming technique for
runtime code generation it has been shown that its semantics
can specify compile-time metaprogramming as well.

MacroML [12] showed that the treatment of staged evalu-
ation can form the basis for generative macros (i.e. macros
that cannot inspect code) or more precisely, function inlin-
ing. Theoretically it has been proven that MacroML’s inter-
pretation is a denotational semantics where MetaML is the
internal language of the model. Monnier et al.[25] rst ex-
pressed inlining as staged computation but MacroML oered
a user-level perspective by reusing the same mechanisms of
quotes and splices; where splices can appear at the top-level
(not nested in a quote). Modular Macros [45] prototyped a
compile-time variant of MetaOCaml which also comprises
part of our inspiration.

https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3278122.3278139

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

def power_s(x: Expr[Double], n: Int): Expr[Double] =
if (n == 0) '(1.0)
else if (n % 2 == 1) '(~x * ~power_s(x, n - 1))
else '{ val y = ~x * ~x; ~power_s('(y), n / 2) }

inline def power(x: Double, inline n: Int): Double =
~power_s('(x), n)

val x = 2
// 1) staged, runtime generation
val power5 = ('{ (x: Double) => ~power_s('(x), 5)}).run
power5(x)
// 2) macro, compile-time generation
power(x, 5)
// Both generate: { val y = x * x; val y2 = y * y; x * y2 }

Figure 1. Power function, staged or inlined

While the same line of work inspired many metaprogram-
ming libraries and language features, to our knowledge built-
in support for both run-time MSP and generative macros
has not been implemented previously in a unifying man-
ner. We advocate that such a unication has a two-fold ben-
et: 1) users rely on a single abstraction to express code
generation and 2) having a single subsystem in the com-
piler favors maintainability. Our view regarding top-level
splices is on par with the benets of MSP on domain-specic
optimizations[7, 21, 22]: in modern programming languages,
inlining (à la C++) with a suciently smart partial evaluator
is not necessarily equivalent with domain-specic optimiza-
tions that can be done at compile-time.

In our work a staged library can be used, unaltered, either
as a macro or a run-time code generator. We illustrate stag-
ing and macros via the folklore example of a simple power
function, which has been used for demonstrating partial
evaluation techniques. The power_s, staged function is de-
ned recursively using the basic method of exponentiation
by squaring. The inline function power becomes a macro by
expanding power_s. In Figure 1 we see two dierent ways
to use it: 1) staged; generation happens at runtime and 2)
inlined generation happens at compile-time.

Contributions In this paper, inspired from MetaML and
MacroML we present a practical implementation of homoge-
neous generative metaprogramming (HGMP) for Scala:

• We present a design with quotes, splices, and top-level
splices to support both MSP and macros simultane-
ously.

• We extend the operation of splicing to handle terms
and types uniformly.

• We present how our system operates under a MetaML-
inspired check, Phase Consistency Principle (PCP), that
regulates free variable accesses in quoted and spliced
expressions and types uniformly, for both MSP and
macros.

Scala is a multi-paradigm programming language for the
JVM oering a metaprogramming API called scala.reect [5].
scala.reect supports type-aware, runtime and compile-time
code generation providing an expressive and powerful sys-
tem to the user (both generative and analytical). Despite the
success of scala.reect, the API exposed compiler internals
and gave rise to portability problems between compiler ver-
sions [24]. We implemented our system for the Dotty [40]
compiler for Scala and we believe that the design is portable
in other languages as well.

Organization First, in Section 2, we introduce a motivat-
ing example to explain the high-level semantics of quotes
and splices. In Section 3 we present PCP and the details of
multi-staging and macros. In Section 4 we discuss how to
implement cross-stage persistence (CSP) in this system. In
Section 5 we show how to simplify the handling of type
splices in quoted code. In Section 6 we discuss lifted lambdas
and β-reduction optimizations. Section 7 describes the im-
plementation in Dotty. Section 8 presents two case studies1:
(i) we give a sample solution to the Hidden Markov Model
challenge as specied in Shonan Challenge for Generative
Programming [1] and (ii) we port Strymonas [22], a staged
library for streams. In Section 9 we discuss the related work
and conclude in Section 10.

2 Overview of Quotes and Splices
Our metaprogramming system is built on two well-known
fundamental operations: quotation2 and splicing. A quota-
tion is expressed as '(...) or '{...} for expressions (both
forms are equivalent) and as '[...] for types. Splicing is
expressed with the ~ prex operator.
If e is an expression, then '(e) or '{e} represent the

opaque typed abstract syntax tree representing e. If T is a
type, then '[T] represents the opaque type structure repre-
senting T. The precise denitions of typed abstract syntax
tree or type structure do not matter for now, the expressions
are used only to give some intuition that they represent code
as a value. Conversely, ~e evaluates the expression e, which
must yield a typed abstract syntax tree or type structure, and
embeds the result as an expression (respectively, type) in
the enclosing program. Informally, by quoting we delay the
evaluation of an expression—or we stage, in MSP terms—and
by splicing, we evaluate an expression before embedding the
result in the surrounding quote.
Quotes and splices are duals of each other. For arbitrary

expressions e: T and types T we have ~'(e) = e and ~'[T]

= T; for arbitrary AST-typed expressions e2: Expr[T] and
t: Type[T] we have '(~e) = e and '(~t) = t.

1The code of the case studies, along with unit tests and benchmarks are at
hps://github.com/nicolasstucki/doy-staging-gpce-2018
2Ormore accurately quasiquotation, which represents quotes with unquoted
expressions getting evaluated rst.

https://github.com/nicolasstucki/dotty-staging-gpce-2018

A Practical Unification of Multi-stage Programming and Macros GPCE ’18, November 5–6, 2018, Boston, MA, USA

Quoted code values can have the following two types:

• Expr[T]: typed abstract syntax trees representing an
expression of type T.

• Type[T]: type structures representing a type T.

Quoting can be seen as the function that takes expressions
of type T to expressions of type Expr[T] and a type T to an
expression of type Type[T]. Splicing takes expressions of type
Expr[T] to expressions of type T and an expression of type
Type[T] to a type T. For example, the code below presents
unrolled, a recursive function which generates code that
will explicitly perform the given operation for each element
of a known list. The elements of the list are expressions
themselves and the function maps expressions of integers to
expressions of Unit (or statements). We use quotes to delay
the representation of the return value and splice the result
of the evaluation of f(head) and unrolled(tail, f).

def unrolled(list: List[Expr[Int]], f: Expr[Int] =>
Expr[Unit]): Expr[Unit] = list match {

case head :: tail => '{ ~f(head); ~unrolled(tail, f) }
case Nil => '()

}
unrolled(List('(1), '(2)), (i: Expr[Int]) => '(println(~i)))
// Generates: '{ println(1); println(2); () }

Similarly, it is also possible to splice types in the quoted
code giving us the capability of creating expressions of types
not known at compile time. In the example below x has type
Expr[T] but we require T itself to be unknown.

def some[T](x: Expr[T], t:Type[T]): Expr[Some[T]] =
'{ Some[~t](~x) }

def someType[T](t:Type[T]): Type[Some[T]] =
'[Some[~t]]

In this sectionwe showed how to unroll a loop for a known
sequence of staged expressions. However, we have deliber-
ately not yet discussed whether code generation happens at
compile-time or run-time.

3 Unifying Multi-stage Programming and
Macros

This section introduces our Phase Consistency Principle (PCP)
and how we employ it to check that the staged code is con-
sistent. Then, we will see how quotes and splices are used in
multi-stage programming and macros alike.
To start, let us adapt the requirements of our unrolled

example and instead of unrolling a loop for a known se-
quence of staged expressions we want to stage a loop for
an unknown sequence. The following example shows what
happens when we start nesting quotes, in splices, in quotes.
~f('(element)) is inside a quote, which means that the ex-
pression will generate some code that will be spliced in-place.
Inside it we refer to '(element), which is dened in the outer

quote. Additionally, we make this version generic on T with
Type[T], which is spliced in the type of val element: ~t.

def staged[T](arr: Expr[Array[T]], f: Expr[T] =>
Expr[Unit])(implicit t: Type[T]): Expr[Unit] = '{

var i: Int = 0
while (i < (~arr).length) {

val element: ~t = (~arr)(i)
~f('(element))
i += 1

}
}

Intuition The stage in which the code is run is determined
by the dierence between the number of splice scopes and
quote scopes in which the code is embedded.

• If there is a top-level splice—a splice not enclosed in
quotes—the code is run at compile-time (i.e. as a macro).

• If the number of splices equals the number of quotes,
the code is compiled and run as usual.

• If the number of quotes exceeds the number of splices,
the code is staged. That is, it produces a typed abstract
syntax tree or type structure at run-time. A quote ex-
cess of more than one corresponds to multi-staged
programming.

3.1 Phase Consistency Principle
A fundamental phase consistency principle (PCP) regulates
accesses to free variables in quoted and spliced code:

• For any free variable reference x, the number of quoted
scopes and the number of spliced scopes between the
reference to x and the denition of x must be equal.

Here, the self-reference to an object (this) counts as free
variables. On the other hand, we assume that all imports
are fully expanded and that _root_ is not a free variable. So
references to global denitions are allowed everywhere.

For example, in staged, element is consistent because there
is one ~ and one ' between the denition and its use. The
same is true for arr and t even though there is a ' rst and
then a ~. The type Int of var i: Int is consistent as it is
expanded to _root_.scala.Int, thus not considered a free
variable. Primitive language operation such as += in i += 1

are also globally identiable and hence not free variables.
The variable i is consistent because it is only used locally in
the ', i.e. it is not a free variable of any other quote or splice.
The phase consistency principle can be motivated as fol-

lows: rst, suppose the result of a program P is some quoted
code '{ ... x ... } that refers to a free variable x in P. This
can be represented only by referring to the original variable x.
Hence, the result of the program will need to persist the pro-
gram state itself as one of its parts. This operation should not
be considered positive in general as dierent stages might be
run on dierent machines, as macros do. Hence this situation
should be made illegal. Dually, suppose a top-level part of

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

a program is a spliced code ~{ ... x ... } that refers to
a free variable x in P. This would mean that we refer dur-
ing construction of P to a value that is available only during
execution of P. This is of course impossible and therefore
needs to be ruled out. Now, the small-step evaluation of a
program will reduce quotes and splices in equal measures us-
ing cancellation rules which informally they state that: ~'(e)
⇒ e, '(~e) ⇒ e, ~'[T] ⇒ T and '[~T] ⇒ T. However, the
evaluation will neither create or remove quotes (or splices)
individually. So PCP ensures that the program elaboration
will lead to neither of the two unwanted situations described
above.
In what concerns the range of features it covers, PCP is

quite close to the MetaML family of languages. One dier-
ence is that MetaML does not have an equivalent of the PCP;
quoted code in MetaML can access variables in its immedi-
ately enclosing environment, a capability called Cross-Stage
Persistence (CSP). However, this comes with the caveat that
it restricts cross-platform portability [39], which precludes
compile-time multi-stage programming. In Section 4.1 we
explain the form of CSP we support.

3.2 Supporting Multi-stage Programming
As discussed so far, the system allows code to be staged, i.e.
be prepared to be executed at a later stage. To be able to
consume the staged code, Expr[T] does not only provide the
~ prex method, it also provides run that evaluates the code
and returns a value of type T. Note that ~ and run both map
from Expr[T] to T but only ~ is subject to the PCP, whereas
run is just a normal method. We also provide a show method
to display the code in String form.

def sumCodeFor(arr: Expr[Array[Int]]): Expr[Int] = '{
var sum = 0
~staged(arr, x => '(sum += ~x))
sum

}
val sumCode = '{ (arr: Array[Int]) => ~sumCodeFor('(arr)) }

println(sumCode.show)
// (arr: Array[Int]) => {
// var sum: Int = 0
// var i: Int = 0
// while (i < arr.length) {
// val element: Int = arr(i)
// sum += element
// i += 1
// }
// sum
// }

// evaluate the code of sumCode which return the function
val sum: Array[Int] => Int = sumCode.run
sum(Array(1, 2, 3)) // Returns 6
sum(Array(2, 3, 4, 5)) // Returns 14

Limitations to Splicing Quotes and splices are duals as
far as the PCP is concerned. But there is an additional re-
striction that needs to be imposed on splices to guarantee
soundness: code in splices must be free of scope extrusions,
which we guarantee by disallowing eects. The restriction
prevents code like this:

var x: Expr[T] = _
'{ (y: T) => ~{ x = '(y); 1 } }

This code, if it was accepted, would extrude a reference to a
quoted variable y from its scope. This means we subsequently
access a variable outside the scope where it is dened, which
is problematic. The code is clearly phase consistent, so we
cannot use PCP to rule it out. Instead, we postulate a future
eect system that can guarantee that splices are pure. In the
absence of such a system we simply demand that spliced
expressions are pure by convention, and allow for undened
compiler behavior if they are not.

A second limitation comes from the use of the method run

in splices. Consider the following expression:

'{ (x: Int) => ~{ ('(x)).run; 1 } }

This is again phase correct but will lead us into trou-
ble. Indeed, evaluating the run will reduce the expression
('(x)).run to x. But then the result

'{ (x: Int) => ~{ x; 1 } }

is no longer phase correct. To prevent this soundness hole
it seems easiest to classify run as a side-eecting operation.
It would thus be prevented from appearing in splices. In a
base language with side-eects we’d have to do this anyway:
Since run runs arbitrary code it can always produce a side
eect if the code it runs produces one.

3.3 Supporting Macros
Seen by itself, quotes and splices-based metaprogramming
looks more like a system for staging than one supporting
macros. But combined with Dotty’s inline3 it can be used as
a compile-time metaprogramming system as well. Eectively
executing the staging at compile-time and generating the
full program with no overhead at run-time.

Inline In Dotty the inline keyword can be added to a val,
def or a parameter to a inline def. A denition marked as
inline will be inlined when the code is typed checked. Infor-
mally speaking, a val and a parameter marked as such, will
be inlined only if they are a constant or an inlined constant of
primitive value type (Boolean, Byte, Short, Int, Long, Float,
Double, Char or String). Other values are disallowed to avoid

3Dotty’s inline keyword guarantees inlining and inlines the code at type-
checking time. [41]

A Practical Unification of Multi-stage Programming and Macros GPCE ’18, November 5–6, 2018, Boston, MA, USA

moving any side eects and changing the semantics of the
program.

Function denitions are always inlined in a semantic pre-
serving way as they are in essence β-reductions. Parameters
have call by value (CBV) semantics, hence they are evaluated
before the invocation to the function and bound to local vals.
If the parameters are marked as call by name (CBN) (which
is realized by prexing the type with =>) then the argument
is directly inlined in each reference to the parameter. Inline
parameters are inlined in the resulting code and guaranteed
to be a constant value.

Macro In combination with inline, macro elaboration can
be understood as a combination of a staging library and a
quoted program. An inline function, such as Macros.sum that
contains a splice operation outside an enclosing quote, is
called amacro. Macros are supposed to be expanded in a sub-
sequent phase, i.e. in a quoted context. Therefore, they are
also type checked as if they were in a quoted context. For in-
stance, the denition of sum is type-checked as if it appeared
inside quotes. This makes the call from sum to sumCodeFor

phase-correct, even if we assume that both denitions are
local.

object Macros {
inline def sum(arr: Array[Int]): Int = ~sumCodeFor('(arr))
def sumCodeFor(arr: Expr[Array[Int]]): Expr[Int] =
... // same definitions as before

}

On the other side we will have an App that will use the sum
function.

object App {
val array = Array(1, 2, 3)
Macros.sum(array)

}

When this program is compiled it can be thought of as a
quoted program that is being staged. Inlining the sum func-
tion would give the following phase correct App:

object App {
val array = Array(1, 2, 3)
~Macros.sumCodeFor('(array))

}

Phase correctness is unchanged for Macros and array, in-
lining preserves PCP. But now we have a top-level splice in
the App, which is not an issue as we assumed that App is a
quoted program being staged. The next step is to evaluate
sumCodeFor('(array)) and place the result in the splice.

object App {
val array = Array(1, 2, 3)
~('{ var sum = 0; ...; sum })
// or { var sum = 0; ...; sum } by cancelation rule

}

The second role of inline in a macro is to make constants
available in all stages. To illustrate this, consider the sumN

function that makes use of a statically known size:

object Macros {
inline def sumN(inline size: Int, arr: Array[Int]): Int =

~sumN_m(size, '(arr))
def sumN_m(size: Int, arr: Expr[Array]): Expr[Int] =

... // implemented in section 4.1
}

The reference to size as an argument in sumN_m(size,

'(arr)) seems not phase-consistent, since size appears in a
splice without an enclosing quote. Normally that would be
a problem because it means that we need the value of size
at compile-time, which is not available in general. But since
size is an inline parameter, we know that at the macro
expansion point size will be a known constant value. To
reect this, we will assume that all inline values are not free
variables as they will be known after inlining:

• If x is an inline value (or an inline parameter of an
inline function) it is not a free variable of the quote
or splice.

Additionally we may also have macros with type parame-
ters that are used inside a top-level splice. For example, the
type parameter T used in the macro in the following version
of foreach exemplies this.

inline def foreach[T](arr: Array[T], f: T => Unit): Unit =

~staged[T](...)

When inlined the type T will become a known type, this
implies that macro type parameters can have the same treat-
ment as inline parameters.

• If T is a type parameter of an inline function, then T

is not a free variable of the quote or splice.

Avoiding an Interpreter Providing an interpreter for the
full language is quite dicult, and it is even more dicult
to make that interpreter run eciently. To avoid needing a
full interpreter, we can impose the following restrictions on
the use of splices to simplify the evaluation of the code in
top-level splices.

1. A top-level splice must appear in an inline function
(turning that function into a macro).

2. Splices directly inside splices are not allowed.
3. A macro is eectively nal and it may not override

other methods.
4. Macros are consumed by other modules/libraries.
These restrictions allow us to stage and compile (at macro

compilation time) the code that would be interpreted at
macro expansion time, which entails that the macro will
be expanded using compiled code. Which is faster and does
not require the implementation of an AST interpreter for the
full language.

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

4 Cross-stage Persistence by Lifting
Cross-Stage Persistence refers to persisting some value or
type, available in the current stage, for use in a future stage.
We support persisting base types, ADT encodings (classes)
and abstract types by copying using Liftable. Fully quali-
ed names (terms or types) are always shared. Finally, poly-
morphic lifting (e.g., def lift[T](x: T) = '(x))) is not sup-
ported directly unless written as def lift[T: Liftable](x:

T) = x.toExpr.

4.1 Lifting Expressions
Consider the implementation of sumN_m used in the previous
macro:

def sumN_m(size: Int, arr: Expr[Array[Int]]): Expr[Int] = '{
assert((~arr).length == ~size.toExpr)
var sum = 0
~unrolled(List.tabulate(size)(_.toExpr),

x => '(sum += (~arr)(~x)))
sum

}

The assertion, assert((~arr).length == ~size.toExpr),
looks suspicious. The parameter size is declared as an Int,
yet it is converted to an Expr[Int] with toExpr. Shouldn’t
size be quoted? In fact, this would not work since replacing
size by '(size) in the clause would not be phase correct.
What happens instead is an extension method toExpr is

added. The expression size.toExpr is then expanded to the
equivalent of:

implicity[Liftable[Int]].toExpr(size)

The extension method says that values of types imple-
menting the Liftable type class can be lifted (serialized) to
Expr values using toExpr when scala.quoted._ is imported.
We provide instance denitions of Liftable for several types
including Boolean, String, and all primitive number types.
For example, Int values can be converted to Expr[Int] values
by wrapping the value in a Literal tree node. This makes
use of the underlying tree representation in the compiler for
eciency. But the Liftable instances are nevertheless not
magic in the sense that they could all be dened in a user
program without knowing anything about the representa-
tion of Expr trees. For instance, here is a possible instance of
Liftable[Boolean]:

implicit def BooleanIsLiftable: Liftable[Boolean] = new {
def toExpr(bool: Boolean): Expr[Boolean] =

if (bool) '(true)
else '(false)

}

Once we can lift bits, we can work our way up. For in-
stance, here is a possible implementation of Liftable[Int]
that does not use the underlying tree machinery:

implicit def IntIsLiftable: Liftable[Int] = new {
def toExpr(n: Int): Expr[Int] = n match {

case Int.MinValue => '(Int.MinValue)
case _ if n < 0 => '(-(~toExpr(n)))
case 0 => '(0)
case _ if n % 2 == 0 => '(~toExpr(n / 2) * 2)
case _ => '(~toExpr(n / 2) * 2 + 1)

}
}

Since Liftable is a type class, its instances can be condi-
tional. For example, a List is liftable if its element is:

implicit def ListIsLiftable[T: Liftable: Type]:
Liftable[List[T]] = new {

def toExpr(xs: List[T]): Expr[List[T]] = xs match {
case x :: xs1 => '(~x.toExpr :: ~toExpr(xs1))
case Nil => '(Nil: List[T])

}
}

In the end, Liftable resembles very much a serialization
framework. Like the latter, it can be derived systematically
for all collections, case classes and enums.

4.2 Implicitly Lifted Types
The metaprogramming system has to be able to take a type
T and convert it to a type structure of type Type[T] that can
be spliced. This means that all free variables of the type T

refer to types and values dened in the current stage.
For a reference to a global class, this is easy, just issue

the fully qualied name of the class. Members of reiable
types are handled by just reifying the containing type to-
gether with the member name. But what to do about ref-
erences to type parameters or local type denitions that
are not dened in the current stage? Here, we cannot con-
struct the Type[T] tree directly, so we need to get it from a
possibly recursive implicit search. For instance, to provide
implicitly[Type[List[T]]], the lifted type Type[List[T]]

required by ListIsLiftablewhere T is not dened in the cur-
rent stage. We construct the type constructor of List applied
to the splice of the result of searching for an implicit Type[T],
which is equivalent to '[List[~implicitly[Type[T]]]].

5 Healing Phase of Types
To avoid clutter, the compiler tries to heal a phase-incorrect
reference to a type to a spliced lifted type, by rewriting T to
~implicitly[Type[T]]. For instance, the user-level denition
of staged would be rewritten, replacing the reference to T

with ~implicitly[Type[T]]. The implicitly query succeeds
because there is an implicit value of type Type[T] available
(namely the evidence parameter corresponding to the context
bound Type4), and the reference to that value is phase-correct.

4The notation T: Type is called a context bound and it is a shorthand for
the (implicit t: Type[T]) parameter in the original signature.

A Practical Unification of Multi-stage Programming and Macros GPCE ’18, November 5–6, 2018, Boston, MA, USA

If that was not the case, the phase inconsistency for T would
be reported as an error.

def staged[T: Type](arr: Expr[Array[T]], f: Expr[T] =>

Expr[Unit]): Expr[Unit] = '{
var i = 0
while (i < (~arr).length) {

val element: T = (~arr)(i)
~f('(element))
i += 1

}
}

6 Staged Lambdas
When staging programs in a functional language there are
two unavoidable abstractions: staged lambda Expr[T => U]

and staging lambda Expr[T] => Expr[U]. The former is a
function that will exist in the next stage whereas the second
one is a function that exists in the current stage.

Below we show an instance where these two do not match.
The '(f) has type Expr[Int => Unit] and staged expects
an Expr[Int] => Expr[Unit]. In general we it is practical to
have a mechanism to go from Expr[T => U] to Expr[T] =>

Expr[U] and vice versa (as desribed in [39]).

inline def foreach(arr: Array[Int], f: Int => Unit): Unit =

~staged('(arr), '(f))

def staged(arr: Expr[Array[Int]],

f: Expr[Int] => Expr[Unit]): Expr[Unit] = ...

We provide a conversion from Expr[T => U] to Expr[U]

=> Expr[T] with the decorator AsFunction. This decorator
gives Expr the apply operation of an applicative functor,
where Exprs over function types can be applied to Expr argu-
ments. The denition of AsFunction(f).apply(x) is assumed
to be functionally the same as '((~f)(~x)), however it opti-
mizes this call by returning the result of beta-reducing f(x)

if f is a known lambda expression5.
The AsFunction decorator distributes applications of Expr

over function arrows:

AsFunction(_).apply: Expr[T => U] => (Expr[T] => Expr[U])

We can use the conversion in our previous foreach example
as follows

~foreach('(arr), x => ('(f))(x))

Its dual, let’s call it reflect, can be dened in user space
as follows:

def reflect[T: Type, U: Type](f: Expr[T] => Expr[U]):
Expr[T => U] = '{ (x: T) => ~f('(x)) }

5Without the β -reduction requirement it is possible to implement in user
code.

7 Implementation
The described metaprogramming system is implemented in
the Dotty compiler [40] directly, however it can be ported to
other ecosystems as well. The necessary ingredients to port
the design in other ecosystems are the following:

• A typed and lexically-scoped language.
• Syntax support for quotes and splices.
• Support for the serialization of typed code.
• Support for separate compilation or the use of an ex-
isting interpreter (for macros).

7.1 Syntax changes
A splice ~e on an expression of type Expr[T] is a normal
prex operator such as def unary_~. To make it work as a
type operator on Type[T] as well, we need a syntax change
that introduces prex operators as types. With this addi-
tion, we can implement the type splice with type unary_~.
Analogously to the situation with expressions, a prex type
operator such as ~e is a shorthand for the type e.unary_~.

sealed abstract class Expr[T] {
def unary_~: T

}
sealed abstract class Type[T] {

type unary_~ = T
}

Quotes are supported by introducing new tokens '(, '{,
and '[and adding quoted variants '(...), '{...} and '[...]

to the valid expressions.

7.2 Implementation in Dotty
Quotes and splices are primitive forms in the generated typed
abstract syntax trees. They are eliminated in an expansion
phase after type checking and before starting the transforma-
tion of the trees to bytecode. This phase checks that the PCP
holds, pickles contents of the quotes and expands top-level
splices inserted by macros. All of these can be performed at
the same time.

PCP check To check phase consistency we traverse the
tree top-down remembering the context stage. Each local
denition in scope is recorded with its level and each refer-
ence to a denition is checked against the current stage.

// stage 0
'{ // stage 1
val x = ... // stage 1 with (x -> 1)
~{ // stage 0 (x -> 1)

val y = ... // stage 0 with (x -> 1, y -> 0)
x // error: defined at level 1 but used in stage 0

}
// stage 1 (x -> 1)
x // x is ok

}

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

Pickling quotes If the outermost scope is a quote, we need
to pickle [19] the contents of the quote to have it avail-
able at run-time. We implement this by pickling the tree
as TASTY [27] binary, which is stored in a compacted string.

TASTY is the compact typed abstract syntax tree serializa-
tion format of Dotty. It usually pickles the full code after type
checking and keeps it along the generated classles. This is
used for separate and incremental compilation, documenta-
tion generation, language server for IDE, code decompilation
and now quotes.

It is not possible to pickle the tree inside the quote directly
as the contents of embedded splices are at stage 0 and may
contain free variables. To avoid this we introduce holes in
the trees that will be pickled in their place, each splice in the
quote will have a hole that replaces it. Holes are encoded
as a list of functions fillHole, each function contains the
code that will be used to ll the ith hole. Each hole will have
an argument list, listing variables dened in the quote and
referenced inside the splice. These arguments (e.g., '(x) in
the code below) will be quoted to retain phase consistency.

'{
val x: Int = ...
~{ ... '{ ... x ... } ... }
}
// Is transformed to
'{

val x: Int = ...
~fillHole(0).apply('(x))

}

The contents of the splices will be used to construct each
element of the hole. Each element is a lambda that receives
the quoted arguments and will return the evaluation of the
code in the splice. The lambda will receive as parameters
the quotes that were passed as arguments in the previous
transformation. The quoted parameters need to be spliced
in the body of the splice to keep phase consistency6.

~{ ... '{ ... x ... } ... }
// Is transformed to
(x: Expr[Int]) => { ... '{ ... ~x ... } ... }

Once we applied the rst transformation to the quoted
code we can pickle it and keep the contents of the splices in
a separate structure. We use stagedQuote to put together the
parts of the quotes in some data structure. As an example
consider the following quote:

val arr: Expr[Array[Int]] = ...
'{

var sum = 0
~staged(arr, x => '(sum += ~x))
sum

}

6Note that x must be inside some quote to be phase consistent in the rst
place.

Which will be transformed to the following code:

val arr: Expr[Array[Int]] = ...
stagedQuote(

tasty = """[[// PICKLED TASTY BINARY
var sum = 0
~fillHole(0).apply('(sum))
sum
]]""",

fillHole = List(
(sum: Expr[Int]) => staged(arr, x => '((~sum) += ~x))

)
)

After the presented transformation, the contents of fillHole
will use the same transformation recursively to pickle the
inner quote: '((~sum) += ~x).

Compiling Macros To avoid the need for a complex inter-
preter when evaluating the code in top-level splices we use
part of the pickling mechanism. For example in sum we do
not wish to have to interpret staged(...) when inlining.

object Macros {
inline def sum(arr: Array[Int]): Int = {

var sum = 0
~staged('(arr), x => '(sum += ~x))
sum

}
}

The body of the macro is treated as quoted code and the tree
is split into its parts.
Parameters of the macro are treated as dened outside

of the quote and need to be added in the hole parameters.
Parameters that were marked as inline are passed directly
as values and lifted if used in a quote. We will get a version
of the body that will have a hole in place of the original
contents of the splices. The new version of the body of sum
simply replaces the old one.

inline def sum(arr: Array[Int]): Int = {
var sum = 0
~sum_hole(0).apply('(arr), '(sum))
sum

}

Like with the pickled quotes we also get the contents of
the splices in the form of a list of lambdas sum_hole. Which
will be placed in a static method and compiled along with
sum.

def sum_hole = List(
(arr: Expr[Array[T]], sum: Expr[Int]) =>

staged(arr, x => '((~sum) += ~x))
)

After this transformation, all top-level splices contain a
tree with a call to a parameterless static method, a statically

A Practical Unification of Multi-stage Programming and Macros GPCE ’18, November 5–6, 2018, Boston, MA, USA

known index and a list of quoted (or inline) arguments. The
interpreter that handles the macro splice expansion only
needs to be able to handle these trees.

Unpickling quotes To unpickle quotes we unpickle most
of the tree as usual in TASTY. But, if we encounter a hole it
is lled using the corresponding fillHole for it. The index
of the hole determines which fillHolemust be used and the
arguments of the hole are passed to the fillHole(idx).
For inlined macros it is slightly dierent, as the tree will

already be inlined with holes. Then we just need to load
via reection the corresponding fillHole and expand it nor-
mally.

Running a quote When executing Expr.run, an instance
of the compiler consumes the Expr. This is an instance of the
normal Dotty compiler that is provided by a quoted.Toolbox.
It provides caching and thread safety over the accesses to
the compiler. Multiple instances can be created if needed. In
the Toolbox, the compiler will load the tree from its TASTY
and place the contents of the tree in a method of a new class.
This class is compiled to bytecode and executed.

8 Case Studies
We present two case studies. Firstly, we give a sample solu-
tion to the Hidden Markov Model challenge as specied in
the Shonan Challenge for Generative Programming [1]. This
case study shows that our system captures the basic needs
for abstraction and reusability of staged code. Secondly, we
port Strymonas [22], a staged library for streams, showing
that a more complex library can optimize pipelines either in
a runtime or compile-time fashion, unaltered.

8.1 Case Study 1: Linear Algebra DSL
This case study presents a way to dene a generic and com-
posable Linear Algebra DSL that can be used on staged and
non-staged code alike. We implemented the framework pre-
sented in [21] that provided optimizable matrix multiplica-
tion as part of the Shonan HMM challenge.
To simplify the presentation, in this section we will only

show how to perform a vector dot product. We will present
an implementation for vector dot product that can stage or
unroll the operations, use statically known vectors or dy-
namically accessible ones, and work on any kind of elements.
The same abstraction would be extended and composed for
a matrix multiplication.

8.1.1 Ring Arithmetic
First we have to see how it is possible to abstract over oper-
ations that are staged and ones that are not staged. For this
we will simply dene an interpreter interface for our opera-
tions, in this case it will be the mathematical ring including
subtraction. Apart from the operation, the interface will also
provide the zero and one values for those operations.

trait Ring[T] {
val zero: T
val one: T
val add: (x: T, y: T) => T
val sub: (x: T, y: T) => T
val mul: (x: T, y: T) => T

}

class RingInt extends Ring[Int] {
val zero = 0
val one = 1
val add = (x, y) => x + y
val sub = (x, y) => x - y
val mul = (x, y) => x * y

}

As shown for a Ring[Int] all operations are just inter-
preted. If we implement a Ring[Expr[Int]] all operations
will be staged. In fact RingIntExpr is a small staged inter-
preter, it will be a compiler for operations on Int.

class RingIntExpr extends Ring[Expr[Int]] {
val zero = '(0)
val one = '(1)
val add = (x, y) => '(~x + ~y)
val sub = (x, y) => '(~x - ~y)
val mul = (x, y) => '(~x * ~y)

}

To implement rings on structured types such as a complex
number we implement it generically based on a ring on its
elements. This ring is used to perform all operations on the
inner elements.

case class Complex[T](re: T, im: T)
class RingComplex[U](u: Ring[U]) extends Ring[Complex[U]] {

val zero = Complex(u.zero, u.zero)
val one = Complex(u.one, u.zero)
val add = (x, y) => Complex(u.add(x.re, y.re),

u.add(x.im, y.im))
val sub = ...
val mul = ...

}

This implementation of RingComplex is polymorphic on the
type of elements it contains. Hence it can be instantiated
as Complex[Int] or Complex[Expr[Int]] by instantiating the
rings with the complex ring with RingInt and RingIntExpr

respectively. Using this composability, we can implement all
possible combination of rings by only implementing the ring
for each type twice (unstaged and staged).

8.1.2 Vector Operations
Across this paper we have seen several implementations
of a staged foreach operation that had a while loop or was
unrolled. We will use a vector abstraction that abstracts both
the element type and the index type. The reduce operation
will be provided by the VecOps[Idx, T] interface.

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

case class Vec[Idx, T](size: Idx, get: Idx => T)

trait VecOps[Idx, T] {
val reduce: ((T, T) => T, T, Vec[Idx, T]) => T

}

Now we can implement a version of the operation that
executes the operations (VecOps[Int, T]) and one that stages
the operations (VecOps[Expr[Int], Expr[T]]).

class StaticVecOps[T] extends VecOps[Int, T] {
val reduce: ((T, T) => T, T, Vec[Int, T]) => T =

(plus, zero, vec) => {
var sum = zero
for (i <- 0 until vec.size)

sum = plus(sum, vec.get(i))
sum

}
}
class StagedVecOps[T: Type] extends VecOps[Expr[Int],

Expr[T]] {
val reduce: ((Expr[T], Expr[T]) => Expr[T], Expr[T],

Vec[Expr[Int], Expr[T]]) => Expr[T] =
(plus, zero, vec) => '{

var sum = ~zero
for (i <- 0 until ~vec.size)

sum = ~plus('(sum), vec.get('(i)))
sum

}
}

8.1.3 Linear Algebra DSL
Now we can implement our linear algebra DSL that will
provide the dot product on vectors. We both abstract on the
vector operation and the element ring operations. It will rst
create a vector multiplying the elements using the ring and
then it will be reduced using the operations of the ring.

class Blas1[Idx, T](r: Ring[T], ops: VecOps[Idx, T]) {
def dot(v1: Vec[Idx, T], v2: Vec[Idx, T]): T = {

val v3 = Vec(size, i => r.mul(v1.get(i), v2.get(i)))
ops.reduce(r.add, r.zero, v3)

}
}

This is all we need, now we can instantiate Blas1 with
dierent instances of Ring and VecOps.

// Computes the dot product on vectors of Int
val dotInt = new Blas1(new RingInt, new StaticVecOps).dot
// will compute the value 4
dotInt(

Vec(5, i => i), // [0,1,2,3,4]
Vec(5, i => i % 2)) // [0,1,0,1,0]

val RingComplexInt = new RingComplex(new RingInt)
// Computes the dot product on vectors of Complex[Int]
val dotComplexInt =

new Blas1(RingComplexInt , new StaticVecOps).dot
// will compute the value Complex(-5, 13)

dotComplexInt(
Vec(5, i => Complex(i,i)), // [0,1+i,2+2i,3+3i,4+4i]
Vec(5, i => Complex(i % 2, i % 3))) // [0,1+i,2i,1,i]

// Staged loop of dot product on vectors of Expr[Int]
val dotStagedIntExpr =

new Blas1(new RingIntExpr, new ExprVecOps).dot
// will generate '{ var sum = 0; for (i <- 0 until

arr1.size) sum = sum + arr1(i) * arr2(i); sum }
dotStagedIntExpr(

Vec(5, i => '((~arr1)(~i.toExpr))),
Vec(5, i => '((~arr2)(~i.toExpr)))

// Unrolles the computation of dot product on vectors of
Expr[Int]

val dotStaticIntExpr =
new Blas1(new RingIntExpr, new StaticVecOps).dot

// will generate the code '{ 0*0 + 1*1 + 2*0 +3*1 +4*0 }
dotStaticIntExpr(

Vec(5, i => i.toExpr), // ['(0),'(1),'(2),'(3),'(4)]
Vec(5, i => (i % 2).toExpr)) // ['(0),'(1),'(0),'(1),'(0)]

8.1.4 Modular Optimizations
We will now see how to unroll the dot product of a stages
vector with a known vector. The simple solution is to lift
the second vector elements use dotExprIntExpr like we did
in the previous example. A shortcoming of this approach is
that it will not be able to partially evaluate lifted values.
Instead, we will abstract the fact that we have a value of

type T or Expr[T]. To achieve this we will dene partially
known values PV[T].

sealed trait PV[T] {
def expr(implicit l: Liftable[T]): Expr[T]

}
case class Sta[T](x: T) extends PV[T] { ... }
case class Dyn[T](x: Expr[T]) extends PV[T] { ... }

With this abstraction it is possible to dene a Ring[PV[U]]
that operates both on Ring[U] and Ring[Expr[U]]. In it is
possible to perform constant folding optimizations statically
known elements. In general, this ring can be composed with
the rings for any given type.

class RingPV[U: Liftable](u: Ring[U], eu: Ring[Expr[U]])
extends Ring[PV[U]] {

val zero: PV[U] = Sta(u.zero)
val one: PV[U] = Sta(u.one)
val add = (x: PV[U], y: PV[U]) => (x, y) match {

case (Sta(u.zero), x) => x // Constant fold zero
case (x, Sta(u.zero)) => x // Constant fold zero
case (Sta(x), Sta(y)) =>

Sta(u.add(x, y)) // Evaluate at staging time
case (x, y) =>

Dyn(eu.add(x.expr, y.expr)) // Stage operation
}
val sub = ...
val mul = ...

}

A Practical Unification of Multi-stage Programming and Macros GPCE ’18, November 5–6, 2018, Boston, MA, USA

Using this ring we can optimize away all zeros from the
dot product on vectors of PV[Int] and Complex[PV[Int]]. We
do not use PV[Complex[Int]] as it would stage the complex
before all optimizations can take place.

val RingPVInt =
new RingPV[Int](new RingInt, new RingIntExpr)

// Staged loop of dot product on vectors of Int or Expr[Int]
val dotIntOptExpr =

new Blas1(RingPVInt, new StaticVecOps).dot
// dotIntOptExpr will generate the code for
// '{ arr(1) + arr(3) }
dotIntOptExpr(

Vec(5, i => Dyn('((~arr)(~i.toExpr)))),
Vec[Int, PV[Int]](5, i => Sta((i % 2))) // [0,1,0,1,0]

).expr

8.2 Case Study 2: Stream Fusion, to Completeness
List processing has been a key abstraction in functional pro-
gramming languages [3]; an abstraction that is tightly cou-
pled with the notion of lazy evaluation [14]. A list processing
library is typically equipped with a set of operators to create
lists, transform and consume them into scalar or other kinds
of data structures. Data.List in Haskell, a lazy programming
language, relies on writing the list processing functions us-
ing appropriate data structures, providing a set of rewrite
rules to identify patterns in the code and then relying on
the optimizing phase of GHC [30] to apply them [13]. The
expected result is to compile a pipeline into a low-level, tight-
loop, with zero abstraction costs such as no intermediate data
structures and heap-allocated objects. For Scala and similar
eager programming languages, stream libraries are simu-
lating laziness on their own, either by relying on unfolds

(pull-based streams) or again folds (push-based streams) [2].
Strymonas, based on unfolds [22] implements a staged

stream library that fuses pipelines generating tight-loops.
Strymonas comes in two avors, one in Scala/LMS and one
in BER MetaOCaml. In this section we discuss a third port
of this library in Scala demonstrating that now Scala is
equipped with the necessary abstractions to support Stry-
monas. There are two kinds of combinators in this design: a)
regular and b) *Raw versions. The former have the familiar
signatures we know and the latter are used to pattern match
on the stream shape (Producer) of a downstream combinator
manipulating its shape accordingly. The latter can be seen
as code combinators that operate on a “suitable intermediate
representation” [7]. Additionally, they use CPS internally to
enable let-insertion in stateful combinators. Since Strymonas
is not relying on control eects our system can fully support
it. Stream pipelines in Strymonas can be either staged or
used as a macro, as shown in Section 1.

A note on the performance of the generated code. The
benchmarks in Figure 2 demonstrate that the use of macros
elides the costs of runtime code-generation as expected. The

Figure 2. Strymonas microbenchmarks in msec / iteration.
“Macro” and “Staged” is the execution time of the generated
code. “Staging + Staged” is the time taken to stage the code
at runtime and execute it. The rst execution of “Staging”
takes an additional 2.5 seconds to load the compiler.

macro and staged generated code were benchmarked by
warming-up the code (to force JIT compilation). We also
show the additional cost of staging and then running the
resulting function. The overhead is the combination of com-
piling the code to bytecode, loading and JIT-compiling the
code. Additionally on a cold JVM the rst execution of run
takes around 2.5 seconds to load the compiler. However, we
omit it from the gure since it is amortized during warmup.
Comparatively, macros do not incur such a performance
penalty because the compiler is already loaded.
For our benchmarks we used the Java Microbenchmark

Harness (JMH) [35] tool: a benchmarking tool for JVM-based
languages that is part of the OpenJDK. The system we use
runs an x64 OSX High Sierra 10.13.6 operating system on
bare metal. It is equipped with a 4 GHz Intel Core i7 CPU
(i7-6700K) having 4 physical and 8 logical cores. The total
memory of the system is 16 GB of type 1867 MHz DDR3.

9 Related Work
Our system is heavily inspired by the long line of work by
MetaML[39], MetaOCaml [6] and BER MetaOCaml[20]. We
rely on the latter for most of our design decisions. We of-
fer the capability of pretty printing generated code, but our
system, contrary to BER MetaOCaml, compiles to native
code rst. In our case, native code (JVM bytecode) was sim-
pler to implement since we rely on TASTY, the serialization
format for typed syntax trees of Scala programs [27]. BER
MetaOCaml oers the capability to programmers to process
code values in their own way. We plan to make our system
extensible in the same way but by relying on TASTY.
Modular Macros [45] oered a compile-time variant of

BER MetaOCaml by introducing a new keyword to enable
macro expansion. In their work they demonstrate that an
existing staged library needs intrusive changes to sprinkle
the code with the aforementioned keywords. In our case we
just need one denition with a top-level splice and we reuse
a staged library unchanged. Modular Macros is a separate
project to BER MetaOCaml so the two techniques were not
composed.

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

MacroML [12] pioneered compile-time version of MetaML
showing at a theoretical level that the semantics of MetaML
subsume generative macros; MacroML essentially translates
macro programs to MetaML programs. Our work presents
a conuence of macros and multi-stage programming in
the same language (considering the imperative features of
Scala, something left out from MacroML’s development).
Even though this merge was not demonstrated in the original
work by Ganz et al. we believe that their work provides useful
insights for the future foundations of our system.

Template Haskell [34] is a very expressive metaprogram-
ming system that oers support for code generation not only
of expressions but also denitions, instances and more. Tem-
plate Haskell used the type class lift to perform CSP, we
used the same technique for our Liftable construct. Code
generation in Template Haskell is essentially untyped; the
generated code is not guaranteed to be well-typed. Typed
TemplateHaskell, on the other hand, also inspired byMetaML
and MetaOCaml oers a more restrictive view in order to
pursue a disciplined system for code generation. Typed Tem-
plate Haskell is still considered to be unsound under side
eects [18], providing the same static guarantees as MetaO-
Caml. To avoid these shortcomings we permit no side eects
in splice operations as well. We regard side eects as an
important aspect of programming code generators. The de-
cision to disallow eects in splices was taken because it was
a simple approach to avoid the unsoundness hole of scope-
extrusion. At the moment, code generators and delimited
control (e.g., like restricting the code generator’s eects to
the scope of generated binders [17]) was out of the scope of
this paper but remains a goal of our future work.
F# supports code quotations that oer a quoting mecha-

nism that is not opaque to the user eectively supporting
analysis of F# expression trees at runtime. Programmers can
quote expressions and they are oered the choice of getting
back either a typed or an untyped expression tree. F# does
not support multi-stage programming and currently lacks
a code quotation compiler natively7. Furthermore, lifting is
not supported. Finally, F# does not support splicing of types
into quotations.

Scala oers experimental macros (called blackbox in Scala
parlance) [4, 5]. The provided macros are quite dierent from
our approach. Those macros expose directly an abstraction
of the compiler’s ASTs and the current compilation context.
Scala Macros require specialized knowledge of the compiler
internals. Quasiquotes, additionally, are implemented on top
of macros using string interpolators [33] which simplify code
generation. However, the user is still exposed to the same
complex machinery, inherited from them. Scala also oers
macros that can modify existing types in the system (white-
box and annotation macros). They have proven dangerously

7Splice types into Quotations–hps://web.archive.org/web/20180712194211/
hps://github.com/fsharp/fslang-suggestions/issues/584

powerful; they can arbitrarily aect typing in unconven-
tional ways giving rise to problems that can deteriorate IDE
support, compiler evolution and code understanding.
Lightweight Modular Staging (LMS) oers support for

Multi-stage Programming in Scala[32]. LMS departs from the
use of explicit staging annotations by adopting a type-based
embedding. On the contrary, a design choice of our system is
to oer explicit annotations along the lines of MetaML. We
believe that programming with quotes and splices reects
the textual nature of this kind of metaprogramming and
gives the necessary visual feedback to the user, who needs
to reason about code-fragments. LMS is a powerful system
that preserves the execution order of staged computations
and also oers an extensible Graph-based IR. On the ip-
side, two shortcomings of LMS, namely high compile times
and the fact that it is based on a fork of the compiler were
recently discussed as points of improvement [31].
Squid [28, 29] advances the state of the art of staging

systems and puts quasiquotes at the center of user-dened
optimizations. The user can pattern match over existing
code and implement retroactive optimizations modularly. A
shortcoming in Squid, implemented as a macro library, is
that free variables must be marked explicitly. Furthermore,
contexts are represented as contravariant structural types8
which complicates the error messages.

10 Conclusion & Future Work
Metaprogramming in general has a reputation for being dif-
cult and confusing. However with explicit Expr/Type types,
generative metaprogramming with quotes and splices can
become downright pleasant. A simple strategy rst denes
the underlying quoted or unquoted values using Expr and
Type and then inserts quotes and splices to make the types
line up. Phase consistency is at the same time a great guide-
line where to insert a quote or a splice and a vital sanity
check that the result makes sense.

As future work we plan to study the formal properties of
our system. Furthermore, we plan to complement it with a
version of inline that not only provides β-reductions at the
expression-level but also at the type-level.

Acknowledgments
We thank the anonymous reviewers of the program commit-
tee for their constructive comments. We gratefully acknowl-
edge funding by the Swiss National Science Foundation un-
der grants 200021_166154 (Eects as Implicit Capabilities)
and 407540_167213 (Programming Language Abstractions
for Big Data). We thank Liu Fengyun, Olivier Blanvillain,
Oleg Kiselyov, Nick Palladinos, Lionel Parreaux and the
Dotty contributors for discussions we had.

8type Code[+Typ, -Ctx]

https://web.archive.org/web/20180712194211/https://github.com/fsharp/fslang-suggestions/issues/584
https://web.archive.org/web/20180712194211/https://github.com/fsharp/fslang-suggestions/issues/584

A Practical Unification of Multi-stage Programming and Macros GPCE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] Baris Aktemur, Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh

Shan. 2013. Shonan Challenge for Generative Programming: Short
Position Paper. In Proc. of the ACM SIGPLAN 2013 Workshop on Partial
Evaluation and Program Manipulation (PEPM ’13). ACM, New York,
NY, USA, 147–154. hps://doi.org/10.1145/2426890.2426917

[2] Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2014.
Clash of the Lambdas. In Proc. 9th International Workshop on Imple-
mentation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems (ICOOOLPS ’14). arXiv:cs.PL/1406.6631

[3] W. H. Burge. 1975. Stream Processing Functions. IBM J. Res. Dev. 19, 1
(Jan. 1975), 12–25. hps://doi.org/10.1147/rd.191.0012

[4] Eugene Burmako. 2013. Scala Macros: Let Our Powers Combine!: On
How Rich Syntax and Static Types Work with Metaprogramming. In
Proc. of the 4th Workshop on Scala (SCALA ’13). ACM, New York, NY,
USA, Article 3, 10 pages. hps://doi.org/10.1145/2489837.2489840

[5] Eugene Burmako. 2017. Unication of Compile-Time and Runtime
Metaprogramming in Scala. Ph.D. Dissertation. Lausanne.

[6] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003.
Implementing Multi-stage Languages Using ASTs, Gensym, and Reec-
tion. In Proc. of the 2nd International Conference on Generative Program-
ming and Component Engineering (GPCE ’03). Springer-Verlag, Berlin,
Heidelberg, 57–76. hp://dl.acm.org/citation.cfm?id=954186.954190

[7] Albert Cohen, Sébastien Donadio, Maria-Jesus Garzaran, Christoph
Herrmann, Oleg Kiselyov, and David Padua. 2006. In Search of a
Program Generator to Implement Generic Transformations for High-
performance Computing. Sci. Comput. Program. 62, 1 (Sept. 2006),
25–46. hps://doi.org/10.1016/j.scico.2005.10.013

[8] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid
Taha. 2004. DSL Implementation in MetaOCaml, Template Haskell, and
C++. Springer Berlin Heidelberg, Berlin, Heidelberg, 51–72. hps:
//doi.org/10.1007/978-3-540-25935-0_4

[9] Krzysztof Czarnecki, Kasper Østerbye, and Markus Völter. 2002. Gen-
erative programming. In European Conference on Object-Oriented Pro-
gramming. Springer, 15–29.

[10] Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged
Computation. J. ACM 48, 3 (May 2001), 555–604. hps://doi.org/10.
1145/382780.382785

[11] Matthew Flatt. 2002. Composable and Compilable Macros:: YouWant It
when?. In Proc. of the Seventh ACM SIGPLAN International Conference
on Functional Programming (ICFP ’02). ACM, New York, NY, USA,
72–83. hps://doi.org/10.1145/581478.581486

[12] Steven E. Ganz, Amr Sabry, and Walid Taha. 2001. Macros As
Multi-Stage Computations: Type-safe, Generative, Binding Macros
in MacroML. In Proc. of the Sixth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’01). ACM, New York, NY, USA,
74–85. hps://doi.org/10.1145/507635.507646

[13] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A
Short Cut to Deforestation. In Proc. of the Conference on Functional
Programming Languages and Computer Architecture (FPCA ’93). ACM,
223–232. hps://doi.org/10.1145/165180.165214

[14] J. Hughes. 1989. Why Functional Programming Matters. Comput. J.
32, 2 (April 1989), 98–107. hps://doi.org/10.1093/comjnl/32.2.98

[15] Simon Peyton Jones. 2016. Template Haskell, 14 years on. .hps://www.
cl.cam.ac.uk/events/metaprog2016/Template-Haskell-Aug16.pptx.

[16] Ulrik Jørring and William L. Scherlis. 1986. Compilers and Staging
Transformations. In Proc. of the 13th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL ’86). ACM, New
York, NY, USA, 86–96. hps://doi.org/10.1145/512644.512652

[17] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2009.
Shifting the Stage: Staging with Delimited Control. In Proc. of the 2009
ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation (PEPM ’09). ACM, 111–120. hps://doi.org/10.1145/1480945.
1480962

[18] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2015.
Combinators for Impure Yet Hygienic Code Generation. Sci. Comput.
Program. 112, P2 (Nov. 2015), 120–144. hps://doi.org/10.1016/j.scico.
2015.08.007

[19] Andrew J. Kennedy. 2004. FUNCTIONAL PEARL Pickler Combinators.
J. Funct. Program. 14, 6 (Nov. 2004), 727–739. hps://doi.org/10.1017/
S0956796804005209

[20] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-
Caml. In Functional and Logic Programming, Michael Codish and Eijiro
Sumii (Eds.). Springer International Publishing, Cham, 86–102.

[21] Oleg Kiselyov. 2018. Reconciling Abstraction with High Performance:
A MetaOCaml approach. Foundations and Trends®in Programming
Languages 5, 1 (2018), 1–101. hps://doi.org/10.1561/2500000038

[22] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream Fusion, to Completeness. In Proc. of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL
’17). ACM, 285–299. hps://doi.org/10.1145/3009837.3009880

[23] Oleg Kiselyov and Chung-chieh Shan. 2010. The MetaOCaml les -
Status report and research proposal. In ACM SIGPLAN Workshop on
ML.

[24] Fengyun Liu and Eugene Burmako. 2017. Two approaches to portable
macros. (2017).

[25] Stefan Monnier and Zhong Shao. 2003. Inlining As Staged Com-
putation. J. Funct. Program. 13, 3 (May 2003), 647–676. hps:
//doi.org/10.1017/S0956796802004616

[26] Flemming Nielson and Hanne Riis Nielson. 1992. Two-level Functional
Languages. Cambridge University Press, New York, NY, USA.

[27] Martin Odersky, Eugene Burmako, and Dmytro Petrashko. 2016. A
TASTY Alternative. (2016).

[28] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Quoted
Staged Rewriting: A Practical Approach to Library-dened Optimiza-
tions. In Proc. of the 16th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE 2017). ACM,
New York, NY, USA, 131–145. hps://doi.org/10.1145/3136040.3136043

[29] Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E.
Koch. 2017. Unifying Analytic and Statically-typed Quasiquotes. Proc.
ACM Program. Lang. 2, POPL, Article 13 (Dec. 2017), 33 pages. hps:
//doi.org/10.1145/3158101

[30] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. 2001. Playing
by the Rules: Rewriting as a Practical Optimisation Technique in GHC.
In Haskell workshop, Vol. 1. 203–233.

[31] Tiark Rompf. 2016. Reections on LMS: Exploring Front-end Alter-
natives. In Proc. of the 2016 7th ACM SIGPLAN Symposium on Scala
(SCALA 2016). ACM, New York, NY, USA, 41–50. hps://doi.org/10.
1145/2998392.2998399

[32] Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging:
A Pragmatic Approach to Runtime Code Generation and Compiled
DSLs. In Proc. of the Ninth International Conference on Generative Pro-
gramming and Component Engineering (GPCE ’10). ACM, New York,
NY, USA, 127–136. hps://doi.org/10.1145/1868294.1868314

[33] Denys Shabalin. 2014. Hygiene for scala. Technical Report.
[34] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-

programming for Haskell. In Proc. of the 2002 ACM SIGPLANWorkshop
on Haskell (Haskell ’02). ACM, New York, NY, USA, 1–16. hps:
//doi.org/10.1145/581690.581691

[35] Aleksey Shipilev, Sergey Kuksenko, Anders Astrand, Staan Friberg,
and Henrik Loef. 2007. OpenJDK Code Tools: JMH. hp://openjdk.
java.net/projects/code-tools/jmh/.

[36] Yannis Smaragdakis, Aggelos Biboudis, and George Fourtounis. 2017.
Structured Program Generation Techniques. In Grand Timely Topics
in Software Engineering, Jácome Cunha, João P. Fernandes, Ralf Läm-
mel, João Saraiva, and Vadim Zaytsev (Eds.). Springer International
Publishing, Cham, 154–178.

https://doi.org/10.1145/2426890.2426917
http://arxiv.org/abs/cs.PL/1406.6631
https://doi.org/10.1147/rd.191.0012
https://doi.org/10.1145/2489837.2489840
http://dl.acm.org/citation.cfm?id=954186.954190
https://doi.org/10.1016/j.scico.2005.10.013
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/507635.507646
https://doi.org/10.1145/165180.165214
https://doi.org/10.1093/comjnl/32.2.98
. https://www.cl.cam.ac.uk/events/metaprog2016/Template-Haskell-Aug16.pptx
. https://www.cl.cam.ac.uk/events/metaprog2016/Template-Haskell-Aug16.pptx
https://doi.org/10.1145/512644.512652
https://doi.org/10.1145/1480945.1480962
https://doi.org/10.1145/1480945.1480962
https://doi.org/10.1016/j.scico.2015.08.007
https://doi.org/10.1016/j.scico.2015.08.007
https://doi.org/10.1017/S0956796804005209
https://doi.org/10.1017/S0956796804005209
https://doi.org/10.1561/2500000038
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1017/S0956796802004616
https://doi.org/10.1017/S0956796802004616
https://doi.org/10.1145/3136040.3136043
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://doi.org/10.1145/2998392.2998399
https://doi.org/10.1145/2998392.2998399
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

GPCE ’18, November 5–6, 2018, Boston, MA, USA N. Stucki, A. Biboudis, M. Odersky

[37] Walid Taha. 1999. Multi–Stage Programming: Its Theory and Applica-
tions. Ph.D. Dissertation. Oregon Graduate Institute of Science and
Technology.

[38] Walid Taha. 2004. A Gentle Introduction to Multi-stage Programming.
InDomain-Specic ProgramGeneration: International Seminar, Dagstuhl
Castle, Germany, March 23-28, 2003. Revised Papers, Christian Lengauer,
Don Batory, Charles Consel, and Martin Odersky (Eds.). Number 3016.
Springer Berlin Heidelberg, 30–50.

[39] Walid Taha and Tim Sheard. 1997. Multi-stage Programming with
Explicit Annotations. In Proc. of the 1997 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation (PEPM
’97). ACM, New York, NY, USA, 203–217. hps://doi.org/10.1145/
258993.259019

[40] The Dotty Team. 2018. Dotty Compiler: A Next Generation Compiler
for Scala. hps://web.archive.org/web/20180630221002/hp://doy.
epfl.ch/.

[41] The Dotty Team. 2018. Dotty Inline. hps://web.archive.org/web/
20171230163822/hp://doy.epfl.ch:80/docs/reference/inline.html.
[Accessed: 2018-07-09].

[42] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. 2011. Languages As Libraries. In Proc. of
the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’11). ACM, New York, NY, USA, 132–141.
hps://doi.org/10.1145/1993498.1993514

[43] Laurence Tratt. 2008. Domain Specic Language Implementation via
Compile-time Meta-programming. ACM Trans. Program. Lang. Syst.
30, 6, Article 31 (Oct. 2008), 40 pages. hps://doi.org/10.1145/1391956.
1391958

[44] T Veldhuizen and E Gannon. 1998. Active libraries: Rethinking the
roles of compilers and libraries. In Proc. of the 1998 SIAM Workshop:
Object Oriented Methods for Interoperable Scientic and Engineering
Computing. 286–295.

[45] Jeremy Yallop and Leo White. 2015. Modular macros.

https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/258993.259019
https://web.archive.org/web/20180630221002/http://dotty.epfl.ch/
https://web.archive.org/web/20180630221002/http://dotty.epfl.ch/
https://web.archive.org/web/20171230163822/http://dotty.epfl.ch:80/docs/reference/inline.html
https://web.archive.org/web/20171230163822/http://dotty.epfl.ch:80/docs/reference/inline.html
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1391956.1391958
https://doi.org/10.1145/1391956.1391958

	Abstract
	1 Introduction
	2 Overview of Quotes and Splices
	3 Unifying Multi-stage Programming and Macros
	3.1 Phase Consistency Principle
	3.2 Supporting Multi-stage Programming
	3.3 Supporting Macros

	4 Cross-stage Persistence by Lifting
	4.1 Lifting Expressions
	4.2 Implicitly Lifted Types

	5 Healing Phase of Types
	6 Staged Lambdas
	7 Implementation
	7.1 Syntax changes
	7.2 Implementation in Dotty

	8 Case Studies
	8.1 Case Study 1: Linear Algebra DSL
	8.2 Case Study 2: Stream Fusion, to Completeness

	9 Related Work
	10 Conclusion & Future Work
	Acknowledgments
	References

