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ABSTRACT
The goal of this paper is to design an easy type-safe metapro-
gramming API for Scala to capture generative metapro-
gramming tasks that depend on existing definitions to gen-
erate others, by writing meta-code as close as possible to
regular Scala code.
MorphScala, is a simple domain specific language based

on the for-comprehension syntax, that introduces the class
morphing metaprogramming technique to the Scala program-
ming language. Class morphing is a flavor of compile time
reflection (CTR) over fields or methods of classes and inter-
faces.

The enabling technologies for MorphScala are Scala macros
and quasiquotes that provide a powerful API for compile-
time transformations.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Code gen-
eration; D.3.2 [Programming Languages]: Language Clas-
sifications—Extensible languages

General Terms
Languages

Keywords
scala, class morphing, macros, quasiquotes, metaprogram-
ming

1. INTRODUCTION
Elements of modern metaprogramming gained inspiration

from metaobject protocols [9] (MOPs) like the metaobject
protocol of Smalltalk and the Common List Object System
(CLOS).
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Metaobjects historically are the basis of many introspec-
tion mechanisms that modern programming languages in-
clude, either at compile time or at runtime like simple type
introspection, reflection, macros, quasiquotes or of higher
level ones like F#’s type providers [16]. The technique named
Computational Reflection in Smalltalk-80 enabled, through
MOPs, the restructuring of classes, the creation and deletion
of methods, the evolution of new class hierarchies at runtime
or even adding the support of delegation at runtime [5].

Metaclasses are classes whose instances are other classes.
A metaobject protocol is a set of rules that dictates the cre-
ation of classes. Several mainstream programming languages
include the notion of metaclasses today such as Common
Lisp, Groovy, Python, Ruby. In this work, we introduce
the class morphing technique as our metaobject protocol to
the Scala programming language, gaining inspiration from
MorphJ [6] for Java. MorphJ enables static inspection and gen-
eration of classes in a type-safe fashion.
MorphScala introduces type-safe aspect oriented program-

ming [11, 10] (AOP) to Scala. In AOP one can program as-
pect advices for structural alterations, such as before-, after-,
and around-advices. AOP frameworks are based on source-
or bytecode-weaving. Advice languages typically do not take
advantage of static type guarantees. This approach, while
straightforward, leads to an explosion of developers’ assump-
tions during development [17].
MorphScala’s API is defined in terms of the well- estab-

lished Scala Collection API. Programmers’ intuition when
using methods for traversal like foreach, filter, forall is
reused in MorphScala for the purpose of traversing AST el-
ements, filtering them via a pattern-based API and provid-
ing definitions of methods and fields in matching cases. The
benefits of this approach are that a) programmers can use
such an API in the same fashion as they would use collec-
tions, b) our API enables the user to organize cross-cutting
behaviors in standalone metaclasses, in a type-safe man-
ner c) implementation-wise MorphScala relies on macros [2]
(since Scala 2.10) and quasiquotes [14] that solve the prob-
lem of manual tree construction and deconstruction. Macros
make the implementation of MorphScala independent of in-
ternal compiler API’s and quasiquotes are used as part of
both the language to develop metaclasses and of the internal
implementation of the library.

In this paper:

• We present a sketch of the design of metaclasses in
MorphScala.

• We present use cases that demonstrate what static
safety means at the metaclass level.



• We discuss the implementation strategy of MorphScala.

Our work is currently in the design stage, with full im-
plementation to follow. In this paper, we demonstrate how
MorphScala will be used from the user’s perspective and we
initiate a discussion on our goal for type-safe quarantees at
the metaclass level.

2. OVERVIEW AND USAGE
Metaclasses in MorphScala resemble regular class defini-

tions. However, metaclasses are never instantiated with new

- their role is to describe templates for code generation.
Metaclasses in MorphScala are designated by the @morph

annotation that signifies that the annottee is going to de-
scribe one or more rules for generating other classes. A
rule is expressed through a reflective block declarations, and
it comprises a pattern definition that will filter members
from input type definitions (either coming from generic type
parameters or concrete types) and create new definitions
based on the input ones. A reflective block is declared as
a for-comprehension with the range of the iteration desig-
nated with members[X], where X is a concrete type or a type
parameter of the metaclass, the underlying patterns being
quasiquotes and the body of the block being the template for
newly generated members. The body of the reflective defi-
nition block is also specified as a quasiquote, which allows
for quite a concise notation.

In the following example the reflective block definition is
in line 3 and its body is declared as a quasiquote in lines
4-6. The pattern contains a metavariable m indicated with
the dollar sign. With quasiquotes metavariables can capture
names, terms, types, parameters and even lists of those.

1 @morph
2 class Metaclass[X] {
3 for(q"def $m(): Unit" <- members[X]) {
4 q"""def $m(): Unit = {
5 println("Hello World");
6 }"""
7 }
8 }

This class describes a different structure for each instantia-
tion. For every concrete type that will substitute X, the set
of its methods that return Unit will be discovered and for
each one, a new one will be generated with the same sig-
nature but with a single println call. Essentially, for every
different instantiation, such as Metaclass[Integer] or Meta-

class[Customer], the corresponding instance will be equipped
with a variable set of operations that depend on the generic
argument.

1 @morph
2 class Log[X] extends X {
3 for(q"def $m(..$params): $r" <- members[X]) {
4 val args = params.map(p => q"${p.name}")
5 q"""override def $m(..$params): $r = {
6 val result = super.$m(..$args)
7 println(result)
8 result
9 }"""

10 }
11 }

In the example above, the metaclass Log describes a mixin
metaclass the goal of which is to enhance instances with
logging capabilities. In the AspectJ world this is equivalent

to performing a before action at a join point matched by a
pointcut.

On line 2, a type parameter appears as a supertype of the
class, indicating that e.g., a Customer class that is going to
be declared as LogMe[Customer] is going to be a subtype of
the Customer class. This style of mixin programming, often
referred to as: an abstract subclass parameterized by its su-
perclass [1], is something that Scala mixins don’t support
yet (in fact, if not for the @morph annotation, this definition
would be invalid in Scala, because inheritance from type pa-
rameters is prohibited).

On line 3, we introduce the reflective block declaration,
which captures all methods that have non-zero parameters
and a return type. The rule generates a method with the
same signature for each captured method. Each will invoke
the corresponding method from the parent class, thus dele-
gating the call, print the result and return it. Late binding is
supported as the generated methods come from static reflec-
tion over X’s methods which are also visible to the original
(unmorphed) class that is a supertype of Log, as expected.

1 @morph
2 class Pair[X, Y](x: X, y: Y) {
3 for(q"def $m1(..$params1): $r1" <- members[X];
4 q"def $m2(..$params2): $r2" <- members[Y];
5 if m1 == m2 &&
6 params1 == params2 &&
7 r1 == r2) {
8 val args = params1.map(p => q"${p.name}")
9 q"""def $m1(..$params1): Pair[X, Y] =

10 new Pair(x.$m1(..$args),
11 y.$m2(..$args))"""
12 }
13 }

In the last example of this section we present a metaclass
that contains two patterns; correlating the pattern matching
over X with Y. This means that methods that are matched
from the first pattern must also exist in the second. The
Pair metaclass will contain all common methods with the
same signature.

3. TYPE CHECKING METACLASSES
In this section we describe informally the basic rules that

need to be applied statically that are going to ensure that
metaclasses are valid. Our goal is to explore how our design
will enable type checking, without relying on expansion of
macros at the instantiation point. Type errors are caught
after the expansion of macros, essentially when the macro
returns. In order to have type checking at the metaclass
level we want to introspect metaclasses as early as possible
and reason about validity of emitted code (without emitting
it first). Validity for one metaclass means that several reflec-
tive blocks will generate non-conflicting method definitions.
Validity for several metaclasses means that inter-metaclass
references are valid by only looking at metaclasses and not
their instantiations.

3.1 Uniqueness of Declarations
MorphScala is able to detect statically if two metaclasses

are well-formed. Well-formedness in metaclasses means that
for declarations do not produce conflicting definitions. In
the following example, CopyMethods has one type parameter
and the single reflective declaration generates method defi-
nitions as captured by the pattern. This metaclass is well-



formed because for every well-typed X it will always produce
a well-typed result.

1 @morph
2 class CopyMethods[X] {
3 for(q"def $m(..$params): $r" <- members[X]) {
4 q"""def $m(..$params): $r = {
5 ...
6 }""""
7 }
8 }

In another example below, the two reflective declarations
on lines 3 and 9 can be shown to not overlap, because the
number of parameters in methods that they generate is dif-
ferent.

1 @morph
2 class DisjointMethods[X] {
3 for(q"def $m($a: Int): $r" <- members[X]) {
4 q"""def $m($a: Int): $r = {
5 ...
6 }"""
7 }
8

9 for(q"def $m($a: Int): $r" <- members[X]) {
10 q"""def $m($a: Int, s: String): $r = {
11 ...
12 }"""
13 }
14 }

3.2 Validity of Cross References Between Meta-
classes

In the following example we present two metaclasses. Each
contains only one definition which is a reflective block defi-
nition. The second also contains a reference to the first. An
additional challenge in validating well-formedness of these
metaclasses is proving that references to methods matched
by the patterns are guaranteed to be well-typed. In our case,
UnitPair is parameterized by two types X and Y and captures
the following pattern: this class contains all methods of X

that take any number of arguments and return Unit that
also exist with the same signature in Y. Each method that is
reflected by this pattern will contain a block that calls the
same method in two different objects of the same types that
were iterated over.

1 @morph
2 class UnitPair[X, Y](x: X, y: Y) {
3 for(q"def $m1(..$params1): Unit" <- members[X];
4 q"def $m2(..$params2): Unit" <- members[Y];
5 if m1 == m2 && params1 == params2) {
6 val args = params1.map(p => q"${p.name}")
7 q"""def $m1(..$params1) = {
8 x.$m1(..$args)
9 y.$m2(..$args)

10 }"""
11 }
12 }

CallUnitWithString defines a metaclass that has a refer-
ence to UnitPair. Similarly it defines a pattern but for meth-
ods that take a single String parameter.

1 @morph
2 class CallUnitWithString[T, S](t: T, s: S) {
3 val UnitPair: UnitPair[T, S] = ...
4 for(q"def $n1($s: String): Unit" <- members[T];

5 q"def $n2($s: String): Unit" <- members[S];
6 if n1 == n2) {
7 q"""def $n1($s: String): Unit = {
8 UnitPair.$n1($s)
9 }"""

10 }
11 }

Additionally, CallUnitWithString and UnitPair share the same
type parameters. We also notice that the patterns in lines
3-4 are less specific than the pattern in 17-18. This means
that by unification, methods captured from the most specific
pattern will definitely exist in UnitPair as well. Therefore,
it is statically safe to call methods in the UnitPair instance
in this manner.

4. USES CASES
In the following paragraphs we briefly describe potential

usages of MorphScala.

Proxies of libraries.
Usually a library must be accessed under certain assump-

tions. For example, a collection library must be accessed
under the assumption of synchronized access. A family of
metaclasses that capture the essence of a design, by be-
ing immune to interface/signature changes (due to pattern-
based reflection), can prove beneficial and error-free by au-
tomating the generation of proxies.

Testing/benchmarking frameworks.
When using an automated testing framework it is often

needed to employ the same testing activity for many oper-
ations. As methods and fields of a class definition evolve
(added/removed), the corresponding testing/benchmarking
code must be maintained separately. MorphScala may be
used side-by-side with such Scala frameworks.

Mocking frameworks.
Mocking frameworks usually employ reflection for dynamic

generation of mock objects or are implemented as compiler
plugins to enable compile-time generation like ScalaMock
2 [13]. ScalaMock 3 uses macros for compile-time proxies.
The API behind mock objects generation can be captured
with MorphScala.

5. IMPLEMENTATION DISCUSSION
The implementation scheme we describe in this section is

constituted by two phases of macro expansion. Our aim is
to keep the metaclass as simple as possible. The metaclass is
annotated with a macro annotation [3] with the syntax de-
scribed above. The first expansion (of a macro annotation)
transforms this class into a type definition that uses type
macro [4]. Additionally, in this phase, type checking takes
place. The @morph annotation can save the entire AST of
the annottee and store it for later use (e.g. as a non-macro
annotation on the resulting type macro). All the AST’s of
annottees, constitute the metaclasses that need to be type-
checked for validity of references and validity of declarations.

The second expansion (of a type macro) that takes place
much later, generates code from the template of the meta-
class expressed as a type macro and its input type argu-
ments.

In MorphScala we use the familiar for syntax ranging over



member definitions statically. The type definition that we
want to range over, ideally is a collection of members that
satisfy the pattern. For this reason we use a generic method,
which we call members, that represents the collection of such
definitions at compile time. In order to use members as a
part of our for-comprehension syntax, its return type must
support methods like foreach, filter, etc.

The members method is just a stub. Its sole purpose is
to provide a placeholder, which our macros will detect and
use to drive the translation. If the user only calls members

and does not call any macros on it (which does not make
much sense in CTR context), that’s going to be a static er-
ror. Consider our toy example again, Log[X], instantiated as
Log[Customer] with a Customer object that has one method
named order. The simplified translation will be the follow-
ing:

1 members[Customer]
2 .foreach((quasiquote) => (quasiquote));

foreach will be supported as a macro definition on the return
type of members and its purpose will be to expand to method
declarations using the passed quasiquote as template. This
is the second phase of macro expansion.

The interesting part is that after expansion, a new syn-
thetic type definition must be generated. Type macros rewrite
a new Log[Customer] use-site to an expression using the syn-
thetic/specilized class new Log$Customer whose concrete type
definition will effectively be Log$Customer extends Customer.

6. RELATED WORK
With Scala mixins one can achieve an interceptor-like style

of programming by composing mixins together, emulating
effectively the cross-cutting concerns from AOP [8] using
the Dynamic Proxy API of Java.

Method Proxy-Based AOP in Scala [15] uses similar syn-
tax for pointcuts and advices as AspectJ. Method call in-
terception is based on an AOP trait, that acts as a central
database of aspects, and an Aspect class. This work is based
on delegation of higher-order methods, managed by AOP
proxies. It features some form of static-checking, relying
on Scala’s type system, however no inter-aspect guarantees
are discussed. Additionally, the dynamic-dispatch nature of
proxies imposes an execution overhead on any adviced code.
Both solutions appeared before Scala macros.

7. FUTURE WORK
In this paper we present the design of MorphScala. Two

areas that will need investigation are the type-checking rules
and type macros. Additionally we propose two interesting
directions about patterns and generation.

Type checking.
We can regard MorphJ as a starting point for the static

typing of MorphScala. We refer the reader to [6, 7] for a
more in-depth discussion of MorphJ’s typing rules. However,
Java has use-site variance annotations through wildcards,
while Scala has also declaration-site variance (wildcards are
still supported (e.g. Log[_]). This imposes a question on
how this will affect the typing rules for MorphScala.

Type Macros.

Type macros were introduced in Scala as an experimental
addition to macros [4]. Unlike def macros, which expand into
terms, type macros expand into types, which makes them
ideal for our use case. Types generated by type macros can
be introduced as a top level definition that is maintained
by the compiler. This was the most controversial bit of
the design of type macros, because it led to dangerous non-
localities in macro expansions (causing non-determinism in
builds and hard-to-understand dependencies between pro-
gram elements), which ultimately led to their deprecation
and removal from Macro Paradise 1, the experimental build
of Scala compiler that provides additional macro facilities.
However, we believe that this functionality can be reintro-
duced into Macro Paradise in a disciplined manner.

Compile time reflection over additional constructs.
At the moment, MorphScala only supports iteration over

methods and fields. Iterating over other sorts of definitions
(e.g. inner classes and objects) would increase expressivity
of our library in contrast to MorphJ.

Generating Expressions.
In [12] the authors take an interesting direction of compile-

time reflection. Apart from method/field definitions, they
present a pattern-based approach generating statements as
well. We believe that this approach will generalize the con-
cept of pattern-based reflection up to the expression level in
the context of MorphScala.

8. SUMMARY
In this paper we present a design strategy for MorphScala,

an informal discussion of the cases that a set of type checking
rules must capture for type safety and use cases that can
benefit from our library. We attempt to keep the API as
close as possible to MoprhJ in valid Scala syntax powered
by macros and quasiquotes.
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