
Semantics-Preserving Inlining for Metaprogramming
Nicolas Stucki

Aggelos Biboudis
nicolas.stucki@epfl.ch
biboudis@gmail.com

EPFL
Lausanne, Swizerland

Sébastien Doeraene
sebastien.doeraene@epfl.ch

Scala Center (EPFL)
Lausanne, Swizerland

Martin Odersky
martin.odersky@epfl.ch

EPFL
Lausanne, Swizerland

Abstract
Inlining is used in many different ways in programming
languages: some languages use it as a compiler-directive
solely for optimization, some use it as a metaprogramming
feature, and others lay their design in-between. This paper
presents inlining through the lens of metaprogramming and
we describe a powerful set of metaprogramming constructs
that help programmers to unfold domain-specific decisions
at compile-time. In a multi-paradigm language like Scala, the
concern for generality of inlining poses several interesting
questions and the challenge we tackle is to offer inlining
without changing the model seen by the programmer. In this
paper, we explore these questions by explaining the rationale
behind the design of Scala-3’s inlining capability and how it
relates to its metaprogramming architecture.

Keywords: Inlining, OO, Metaprogramming, Macros

1 Introduction
Programming languages [1, 12, 14] usually offer inlining as
a compiler directive for optimization purposes. In some of
these, an inline directive is mandatory to trigger inlining, in
others it is just a hint for the optimizer. The expectation from
a users’ perspective is simple: the semantic reasoning for
a method call should remain unaffected by the presence of
inlining. In other words, inlining is expected to be semantics-
preserving and consequently this form of inlining can be
done late in the compiler pipeline. Inlining is typically im-
plemented in the backend of a compiler, where code repre-
sentations are simpler to deal with. The motivation is simple
and not far from the motivation behind the code below: we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SCALA ’20, November 13, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8177-2/20/11. . . $15.00
https://doi.org/10.1145/3426426.3428486

desire to avoid one method call, thus the method body itself
replaces the call.

inline def square(x: Int): Int = x * x
square(y) // inlined as y*y to avoid a call to square at runtime

Some programming languages do not provide inlining
at the language level and rely on automatic detection of
inlining opportunities instead. Java and its dynamic features
such as dynamic dispatch and hot execution paths, push the
(much more complex) inlining further down the pipeline at
the level of the JVM. Scala primarily relies on the JVM for
performance, though it can inline while compiling to help a
bit the JIT compiler.

However, there is another angle that we can view inlining
from. Inlining can be seen as a form of metaprogramming,
where inlining is the syntactic construct that turns a program
into a program generator [8, 11]. Indeed, the snippet above
describes a metaprogram, the metaprogram that is going to
generate a method body at the call site. This may seem like
a very simple, and obvious observation, but in this paper we
show that metaprogramming through inlining can be seen
as a structured, and semantics-preserving methodology for
metaprogramming.

Typically, in the aforementioned programming languages,
what is getting inlined is a piece of untyped code that is
then typed at the call-site. Therefore the semantics are only
defined at the call-site and there are no semantics to preserve.

// C++
#define square(X) X * X // * does not have any semantics here
square(y) // inlined as y*y and then typed

Sometimes such inlining is done in a different language
fragment (as in C++ templates) at other times it uses stan-
dard methods and calls, as in D inline functions and C++
constrexpr functions. In these cases, inlining is not necessar-
ily semantics preserving, and it also usually does not provide
type-safety guarantees at the definition site. In the former
case, C++ allows code that may not generate valid code for
some of the type parameters of the template, and is only
checked for the specific type arguments. That is, there is
no guarantee that an expanded inline call will always type-
check. In the latter case, functions comewith a complete spec
on what their method bodies can include to be considered

https://doi.org/10.1145/3426426.3428486

SCALA ’20, November 13, 2020, Virtual, USA Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin Odersky

as constexpr. The relevant keyword shows the intention of
inlining and it does not mean that the function is necessarily
going to be executed at compile-time.
Non-semantic inlining can be categorized as syntactic-

inlining. To see the difference between the two, consider this
example with overloaded methods:

def f(x: Any) = 1
def f(x: String) = 2
inline def g[T](x: T) = f(x)
g("abc")

When using semantics-preserving inlining, the inline
could be dropped without changing the result. That means
that the call f(x) would resolve to the first alternative and
the result is 1. With syntactic-inlining, we inline the call to g,
expanding it to f("abc"). This then resolves to the second
alternative of f, yielding 2. So, in a sense, the syntactic-
inlining replaces overloading-resolution with compile-time
multi-method dispatch.
Syntactic-inlining is very powerful and has been used

to great effect to produce heavily specialized code. But can
also be difficult to reason about and it can lead to errors in
expanded code that are hard to track down.
Other compile-time metaprogramming constructs have

inlining as an implicit part of what they do. For instance,
a macro in Lisp [4] or Scala 2 [2] moves the code of the
macro to the call-site (this is a form of inlining) and then
executes the macro’s code at this point. Can we disentangle
inlining from the other metaprogramming features? This is
the approach followed in Scala 3 [18]. It offers a powerful
set of metaprogramming constructs, including staging with
quotes '{..} and splices ${..} [3, 5, 13, 17]. Quotes delay
the execution of code while splices compute code that will
be inserted in a larger piece of code. Staging is turned from
a runtime code-generation feature to a compile-time macro
feature by combining it with inlining.

A macro is an inline function with a top-level splice. E.g.
inline def power(m: Double, inline n: Int): Double =
${ powerCode('{m}, '{n}) }

A call-site such as power(x, 4) is expanded by inlining its
implementation and the value of argument n into it:
val m = x
${ powerCode('{m}, '{4}) }

The contents of this splice is then executed in the context of
the call-site at compile-time.

When used in conjunction with other metaprogramming
constructs, inlining has to be done early, typically during
type checking, because that is when these other constructs
apply. Furthermore, it makes sense that inlining by itself
should be as "boring" as possible. It should be type-safe and
semantics-preserving by default. At the same time, inlined
definitions should be usable and composable in interesting

ways. For instance, since normal methods can override meth-
ods in parent classes or implement abstract methods, it makes
sense to allow the same flexibility for inlined methods, as far
as is possible.

These deliberations lead us to the following principles:
1. Semantics-preserving: A call to an inline method should

have exactly the same semantics as the same method
without the inline modifier.

2. Generality: We want to be able to use and define in-
line methods as generally as possible, as long as (1) is
satisfied.

In an object-oriented language like Scala, the concern for
generality poses several interesting questions, which are
answered in this paper:

• Can inline methods implement abstract methods?
• Can inline methods override concrete methods?
• Can inline methods be overridden themselves?
• Can inline methods be abstract themselves?

There is another question here that will influence the
answers to these four questions.

• Can inline methods be called at runtime?
It will turn out that the answer to this question is "it depends".
Some inline methods will need to be callable at runtime, in
order to maintain semantics preservation. Others cannot
be called at runtime because they use metaprogramming
constructs that can only be executed at compile time.
In this paper, we explore these questions by presenting

the rationale and design of Scala-3’s inlining concept and
how it relates to its metaprogramming architecture.

In section 2 we discuss how our design of inline functions
is based on the principles above. In section 3 we extend
the discussion to the design of inline methods. In section
4 we introduce a simple extension to inline functions that
can affect the semantics at call-site (not the call itself). In
section 5 we show some of the metaprogramming features
that can be built on top of semantics-preserving inlining. We
conclude by discussing the related work in section 8.

2 Inline Functions
We introduce the inline modifier to denote that a function
is an inline function. A function with inline can be called
as any other function would.

inline def logged[T](logger: Logger, x: T): Unit =
logger.log(x)

Assuming that Logger has a proper definition of log,
the code would type check. Inlining this code seems sim-
ple enough as shown below.

logged(new RefinedLogger, 3)
// expands to: (new RefinedLogger).log(3)

Semantics-Preserving Inlining for Metaprogramming SCALA ’20, November 13, 2020, Virtual, USA

But what if the definitions of log were the following?

class Logger {
def log(x: Any): Unit = println(x)

}

class RefinedLogger extends Logger {
override def log(x: Any): Unit = println("Any: " + x)
def log(x: Int): Unit = println("Int: " + x)

}

If we look at logger.log(x) we can see that the only
option is to call Logger.log(Any). By examining the inline
site, one would argue that the method to be invoked should
be RefinedLogger.log(Int). However, this would imply
a change in the semantics of the code after inlining where
the overloading resolution results in different method selec-
tion depending on whether we use inlining or not. With or
without inline, the code should perform the same operation,
therefore we need to retain the original overload resolution
to avoid breaking the first principle.
The elaboration of extension methods1, implicit conver-

sion, and implicit resolution must be preserved as these are
part of the overload resolution. All these could change if they
are performed with different type information, which could
potentially end up calling different methods.

While overloading should not change, it is also possible to
perform de-virtualization without breaking semantics. This
is an optimization that precomputes the virtual dispatch res-
olution (override) that would otherwise happen at runtime.
In the example, we would call RefinedLogger.log(Any)
directly.

2.1 Inline Values
val definitions can also be marked as inline. An inline val
inlines the contents of its right-hand side (RHS) as an inline
def would. Unlike inline defs, when inlining an inline
val we cannot inline any arbitrary RHS as it may recompute
the values several times, which would break the evaluation
order semantics.

inline val x = 4
x // replaced with 4

def z: Int = ...
inline val y = z // error: z is not a known value
y // cannot replace y with z as z may have side effects

Therefore we constrain the RHS to be pure and to be able
to reduce to a value at compile-time.

This means that the RHS can only contain literal values or
references that reduce to a literal constant such as another
inline val or def.

1Extension methods allow one to add methods to a type after the type
is defined–https://web.archive.org/web/20200421114625/https://dotty.epfl.
ch/docs/reference/contextual/extension-methods.html

2.2 Parameters of Inline Functions
To support semantics-preserving inlining in the presence of
effects during the evaluation of arguments, the latter must
be let-bound at the call-site. To illustrate this, consider the
square inline function.

inline def square(x: Int): Int = x * x

This function could be called with an arbitrary parameter
which could have side effects. As Scala provides by-value
call semantics, the argument expression must be evaluated
once and before the evaluation of the body of the function.
The solution is to let-bind the evaluation of the expression
passed as an argument to preserve the evaluation order. In
the following example, the method call n contains an I/O
operation:

def n: Int = scala.io.StdIn.readInt()

square(n) // expands to:
// val x1 = n
// x1 * x1

If we were to inline it as n * n, we would mistakenly read
two numbers from the standard input. This shows why it is
imperative to have let-bound arguments.
Scala also provides by-name parameters. These parame-

ters need to be evaluated each time they are referred to.

inline def twice(thunk: =>Unit): Int = {
thunk
thunk

}

twice { print("Hello!") } // prints: Hello!Hello!
// expands to:
// def thunk = print("Hello!")
// thunk
// thunk

Instead of binding them to a valwe bind them to a def. We
do not replace each reference thunk by print("Hello!")
to avoid code duplication.

Constant folding. After methods and vals are inlined
we can perform constant folding optimizations on primi-
tive types. This implies that constants are propagated and
primitive operations are performed on them.

square(3) // expands to: val x1 = 3; x1 * x1
// optimized to: 3 * 3
// then optimized to: 9

Additionally, if constant folding evaluates the condition of
an if to a known value, then we can partially evaluate the if
and eliminate one of the branches. This allows a limited but
simple way to generate simplified code. More complex and
domain-specific optimizations demand the use of custom
metalanguage code with macros.

https://web.archive.org/web/20200421114625/https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html
https://web.archive.org/web/20200421114625/https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html

SCALA ’20, November 13, 2020, Virtual, USA Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin Odersky

Inline parameters. In some cases, we do not want to
let-bind the arguments and instead we wish to just inline
them directly where they are used. For this purpose, we al-
low parameters to be marked as inline, but only in inline
functions. This makes it a metaprogramming feature as it
provides semantics that are not expressible in normal func-
tions. These parameters have, by construction, semantics
that are similar to by-name and may generate duplicated
code. The inline parameters allow further specialization of
code by duplicating code and allowing each copy to be spe-
cialized in a different way. This specialization might come
from further inlining or by one of the metaprogramming
features.
For example, it is possible to remove closure allocations

early on using inline parameters.

inline def tabulate3[T](inline f: Int => T): List[T] =
List(f(0), f(1), f(2))

tabulate3(x => 2*x)
// expands to: List((x => 2*x)(0), (x => 2*x)(1), (x => 2*x)(2))
// which reduces to : List(0, 2, 4)

Without the inline parameter, we would have been forced
to let-bind the instantiation of the closure which may have
side effects. An optimizer might remove it only if there are no
side effects where we can ensure that the whole expression
is ignored.

2.3 Recursion
Inline functions can call other inline functions and in partic-
ular themselves. Calls to an inline function f within another
inline function g are not immediately inlined within the body
of g. Instead they are only inlined once g has itself be inlined
in third, non-inline function h.

inline def f() = 3
inline def g() = f() // f not inlined here
def h() = g() // first inlines g then inlines f

Now consider the recursive inline function power.

inline def power(x: Double, n: Int): Double =
if (n == 0) 1.0
else if (n == 1) x
else if (n % 2 == 1) x * power(x, n - 1)
else power(x * x, n / 2)

power(expr, 10)
// expands to:
// val x = expr. // x^1
// val x1 = x * x // x^2
// val x2 = x1 * x1 // x^4
// val x3 = x2 * x // x^5
// x3 * x3 // x^10

Note the importance of parameter semantics: if x would
not be let-bound the computation would be linear instead of
the expected logarithmic time. In this example, we assume
that n will be a constant and that it can be constant folded

in the conditions of the ifs. In turn, we assumed that after
constant folding only one branch will be kept and eventually
will stop the recursion. This will not always be the case.

With recursive inlining we introduce potentially non- ter-
minating inline expansions. Consider the previous example,
but with an unknown value of n.

power(expr, m)
// expands in a first step to:
// val n = m
// if (n == 0) 1.0
// else if (n == 1) x
// else if (n % 2 == 1) x * power(x, n - 1)
// else power(x * x, n / 2)

It is apparent that we could take one more unfolding step
to the next call of power and then recursively do the same
again, so we would never end. The expansion will continue
until a predefined maximum inline depth limit2 is reached
and fail compilation.
As we ensure that all calls to inline functions are inlined

or a compilation failure occurs, we never need to call these
methods at runtime. This implies that the inline function
definitions can be removed from the generated code.

2.4 Inline If
An inline if provides a variant of if that must be constant-
folded in its condition to eliminate one of the branches. If that
cannot be done, an error is emitted and no further expansion
within the if is attempted. Using inline if ensures that we
always partially evaluate the if at compile-time. An inline
if and an if have the exact same semantics at runtime.

This is also useful as an explicit convergence check when
using recursive inline functions.

inline def power(x: Double, n: Int): Double =
inline if (n == 0) 1.0
else inline if (n == 1) x
else inline if (n % 2 == 1) x * power(x, n - 1)
else power(x * x, n / 2)

power(expr, m)
// expands in a first step to:
// val n = m
// inline if (n == 0) 1.0
// else inline if (n == 1) x
// else inline if (n % 2 == 1) x * power(x, n - 1)
// else power(x * x, n / 2)

As n==0 does not have a known value at compile-time,
the expansion fails and no further nested expansions are
attempted. The same happens for the other nested inline
if.

3 Inline Methods
Inline can also be used for methods in classes or traits. Inline
methods will be able to access object fields and interact with
virtual dispatch.

2This limit can be increased by the user if necessary

Semantics-Preserving Inlining for Metaprogramming SCALA ’20, November 13, 2020, Virtual, USA

3.1 Members and Bridges
An inline method may refer in its body to the this reference
of the current class or to any private member. Let us consider
the following inline method defined in a class.

class InlineLogger {

private var count = 0

inline def log[T](op: () => T): Unit = {
val result = op() // may contain call to log
count += 1
println(count + "> " + result)

}
}

First, the method evaluates the operation, then it updates
the private field count, and then prints it with the result.
Note that the operation may contain nested calls to log
which would use the current count.

def inlineLogger = new InlineLogger
inlineLogger.log(() => 5)
// naive expansion:
// val ths = inlineLogger
// val result = (() => 5)()
// ths.count += 1
// println(ths.count + "> " + result)

We need to make sure the prefix of the application (i.e.,
the receiver) is only evaluated once by let-binding it to ths.
Then we use ths in place of this in the inlined code. Unfor-
tunately, the inlined code contains a reference to the private
field count which is not accessible from the call-site (under
the JVM model). This does not break semantics-preservation
but does greatly limit what could be used in the body of an
inline method.
To lift this limitation, we instead generate bridges for all

members that may not be accessible at the call-site. For the
count we would create a getter and setter that make the
bridge possible. This ensures that when the call is inlined all
references are still accessible.

class InlineLogger {

private var count = 0

def inline$count: Int = // only in generated code
count

def inline$count_=(x: Int): Unit = // only in generated code
count = x

inline def log[T](op: () => T): Unit = {
val result = op()
this.inline$count_=(this.inline$count + 1)
println(this.inline$count + "> " + result)

}
}

3.2 Overloads
As inline methods must be semantics-preserving, the defini-
tion and resolution of overloads should not be affected. The

overload resolution algorithm does not need any modifica-
tion, hence it considers all inline and non-inline functions
as equivalent. For example, the following variants perform
the same overload resolution.

def log(msg: String): Unit = ...
def log(x: Any): Unit = ...
log("a")

inline def log(msg: String): Unit = ...
inline def log(x: Any): Unit = ...
log("a")

def log(msg: String): Unit = ...
inline def log(x: Any): Unit = ...
log("a")

inline def log(msg: String): Unit = ...
def log(x: Any): Unit = ...
log("a")

3.3 Abstract Methods and Overrides
Inlinemethods implementing interfaces. Consider the

following example, where we have an inline definition im-
plementing a non-inline abstract method.

trait Logger {
def log[T](op: () => T): Unit

}

class InlineLogger extends Logger {
inline def log[T](op: () => T): Unit = println(op())

}

If we have an instance of InlineLoggerwe can just inline
the code. But now we also allow calls to Logger.log which
will not be inlined.

def logged[T](logger: Logger, x: () => T): Unit =
logger.log(x)

logged(new InlineLogger, 3)

This implies that we have a call to Logger.log at runtime
which should be dispatched to InlineLogger.log. There-
fore if the inline method implements an interface we cannot
ensure it will be completely inlined and we must retain the
code at runtime.

Inline methods overriding normal methods. Consider
the following example, where we have an inline definition
that overrides a non-inline method.

class Logger {
def log[T](op: () => T): Unit = println(op())

}

class NoLogger extends Logger {
inline def log[T](op: () => T): Unit = ()

}

SCALA ’20, November 13, 2020, Virtual, USA Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin Odersky

If we have an instance of NoLogger we can just inline
the code. But once again we also allow calls to Logger.log,
which will not be inlined. Unlike with the implementation
of the abstract method, it would be tempting to say that,
as there exists an implementation of log, we could remove
NoLogger.log from the generated code. However, that would
not be semantics-preserving. In order to ensure that calling
Logger.log on a NoLogger does indeed no logging, we must
also keep the implementation of NoLogger.log at runtime.
Then, virtual dispatch will be able to find the correct imple-
mentation at runtime.

Overriding inline methods. Consider the following ex-
ample, where we have an inline method that is overridden
by another method.

class Logger {
inline def log[T](op: () => T): Unit = println(op())

}

class NoLogger extends Logger {
/*inline*/ def log[T](op: () => T): Unit = ()

}

This time we turned things around and are trying to over-
ride an inline method with any method (inline or not). Using
the same logged example we have a different way in which
semantics-preservation fails.

def logged[T](logger: Logger, x: T): Unit =
logger.log(x) // expanded to the contents Logger.log

logged(new NoLogger)(3)

As log is inlined from Logger before we know which
logger we are using, we will always call Logger.log. Instead,
we would have expected to call NoLogger.log which is a
semantic breakage.
In general, no inline method can be safely overridden as

it bypasses virtual dispatch resolution. Therefore all inline
methods are effectively final.

Abstract inline methods. Consider the following exam-
ple of an abstract inline method.

trait AbstInlineLogger {
inline def log[T](op: () => T): Unit

}

It would be possible to implement this interface with a non-
inline function as it would perfectly preserve the semantics.
But this does not offer any expressivity advantage over a
normal abstract method. Instead, we will restrict it to only be
implementable by inline methods to guarantee that the calls
can be inlined. Unlike plain abstract methods, the abstract
inline method does not enforce the implementations of inline
methods to be retained at runtime.

class InlineLogger extends AbstInlineLogger {

inline def log[T](op: () => T): Unit = println(op())
}

class NoLogger extends AbstInlineLogger {
inline def log[T](op: () => T): Unit = ()

}

It is clear that all implementations of log will be inlined if
we know statically the receiver of the log call which defines
the methods. But, can we ever call AbstInlineLogger.log
directly and still have it inlined?

def logged[T](logger: AbstInlineLogger, x: () => T): Unit =
logger.log(x) // error: cannot inline abstract method

Calling it directly will not work as it is impossible to inline.
But, by inlining the previous code we can get this abstraction
to work.

inline def logged[T](logger: AbstInlineLogger, x: () => T): Unit =
logger.log(x)

logged(new InlineLogger, () => 5)
logged(new NoLogger, () => 6)

Now, when logged is inlined, the call logger.log gets de-
virtualized at compile-time and then can be inlined. Crucially,
with abstract inline methods, we provide a way to guarantee
that all calls to such methods are de-virtualized and inlined
at compile-time.

Inlinemethods overridingwith inline parameters. Con-
sider the following example where a method is overridden
with an inline method and its parameter is marked inline.

class Logger {
def log[T](x: T): Unit = println(x)

}

class NoLogger extends Logger {
inline def log[T](inline x: T): Unit = ()

}

val noLogger: Logger = new NoLogger
noLogger.log(f()) // expands to: ()

val logger: Logger = noLogger
logger.log(f())

Here, inline has a deeper effect and provides the pos-
sibility to override the call semantics. Whenever we call
Logger.log, the arguments will be evaluated with the stan-
dard by-value semantics. In this case, this implies the evalu-
ation of f() which might have side effects. But, when call-
ing NoLogger.log the evaluation of the argument is just
dropped. As a consequence, the call semantics changed and
this pattern should not be allowed.

Abstract inline methods and inline parameters. Con-
sider the following example of an abstract inline method
with an inline parameter. We implement it with a method
that has the same signature.

Semantics-Preserving Inlining for Metaprogramming SCALA ’20, November 13, 2020, Virtual, USA

trait AbstInlineLogger {
inline def log[T](inline x: T): Unit

}

class InlineLogger extends AbstInlineLogger {
inline def log[T](inline x: T): Unit = println(x)

}

class NoLogger extends AbstInlineLogger {
inline def log[T](inline x: T): Unit = ()

}

inline def logged[T](logger: AbstInlineLogger, inline x: T): Unit =
logger.log(x)

val inlineLogger = new InlineLogger
logged(inlineLogger, f()) // expands to: println(f())

val noLogger = new NoLogger
logged(noLogger, f()) // expands to: ()

With this pattern, the semantics of the inline parameter x
are preserved across all abstractions, until the de-virtualization
of AbstInlineLogger.log into InlineLogger.log (which
preserves the call to f()) and NoLogger.log (which elimi-
nates it). Therefore, we can allow abstract methods to have
inline parameters, as long as all its implementations use cor-
responding inline parameters as well. This pattern shows
another useful reason to have abstract inline methods: regu-
lar abstract methods cannot have inline parameters, as we
saw earlier, while abstract inline methods can.

Now, consider an alternative implementation of NoLogger
that does evaluate the argument but does not print it.

class NoLogger extends AbstInlineLogger {
inline def log[T](inline x: T): Unit = {
val y = x
()

}
}
val noLogger = new NoLogger
logged(noLogger, f())
// expands to:
// val y = f()
// ()

It also works, but we just emulated by-value parameters.
Instead, we could also just mark the parameter as a normal
by-value parameter and let it take care of the binding. This
does not contradict the AbstInlineLogger.log interface.

class NoLogger extends AbstInlineLogger {
inline def log[T](x: T): Unit = ()

}
val noLogger = new NoLogger
noLogger(f())
// expands to:
// val x = f()
// ()

Inlinemethods summary. All inline methods are final.
Abstract inline methods can only be implemented by inline
methods. If an inline method overrides/implements a nor-
mal method then it must be retained (i.e. cannot be erased).
Retained methods cannot have inline parameters.

4 Transparent Inlining
A simple but powerful metaprogramming extension to inlin-
ing is the ability to refine the type of an expression after the
call is inlined. The inline call is typed and inlined retaining
its elaboration as with normal inline functions. But instead
of typing the inlined expression as the return time of the
inline function, we take the precise type of the inlined ex-
pression. This unlocks the ability to change the semantics
at the call-site around the inlined call, without changing the
semantics of the code that was inlined.

We use the transparent keyword to enable this feature.

transparent inline def choose(b: Boolean): Any =
if (b) 3 else "three"

val obj1: Int = choose(true)
val obj2: String = choose(false)

This may be used to influence type inference, overload
resolution, and implicit resolution at the call-site. But as with
all inlines, it may not change the elaboration of the inlined
code. To illustrate this, consider the following code where we
have a definition of a method that is overwritten, overloaded
and returns a more precise type.

class A {
def f(a: A): A = ...

}
class B extends A {
override def f(a: A): B = ...
def f(x: B): String = ...

}

transparent inline def g(inline a1: A, inline a2: A): A =
a1.f(a2)

val b: B = ???
val y = g(b, b) // expands to: val y: B = b.f(b)

def h(a: A): Unit = println("A")
def h(b: B): Unit = println("B")
h(y) // prints "B" because g is transparent (otherwise would be "A")

From section 3, we know that for the call semantics to
be preserved we need to make sure that the inlined call to
f should be to B.f(A) at runtime. Before inlining the code
in g, the call to f returned an A as we were calling A.f(A).
After inlining the code in g, this same call gets de-virualized
and we know that we actually call B.f(A) and it returns a B.
Hence the inlined expression is of type B and y is inferred to
be a B as well. Then the rest of the code outside the call is
subject to this more precise type.

The call to h(y) will be statically resolved to a call to the
h(B) overload as y was typed as B. On the other hand, if
g had been a normal function or a non-transparent inline
function, the type of y would have been A. In this case the
overload resolution would have chosen h(A). This shows
how transparent inline function can affect the semantics
around their call-site.

SCALA ’20, November 13, 2020, Virtual, USA Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin Odersky

To be able to propagate the types as we do we need to
inline while typing. Any non-transparent inlining can be
performed after typing.

Each call to a transparent inline will respect the semantic
preservation. In contrast to non-transparent inline function,
replacing it with the same function without transparent may
change the semantics of the overall program. It is possible
to emulate the transparent semantics adding casts that align
with the results of implementation.

/*transparent*/ inline def choose(b: Boolean): Any =
if (b) 3 else "three"

val obj1: Int = choose(true).asInstanceOf[Int]
val obj2: String = choose(false).asInstanceOf[String]

For this to be sound we would need to prove that these
casts have exactly the type of the result based on the types
or statically known values of the arguments.

5 Metaprogramming
With metaprogramming, we introduce metalanguage fea-
tures that allow code manipulation. In general, these fea-
tures only manipulate code in place which maintains the
metaprogramming abstractions simple. This is possible be-
cause inline takes care of placing the metaprogramwhere it
needs to be. In most cases, these metaprogramming features
do not have runtime semantics until expanded at the call-site.
But all of them rely on the knowledge that the code around
them or in their parameters preserved their semantics when
inlining. These features may be combined with transparent
inlining. In this section, we have a non-exhaustive list of
metaprogramming features that are supported by inlining.

5.1 Inline Error
An error method provides a way to emit custom error mes-
sages. The error will be emitted if a call to error is inlined
and not eliminated as a dead branch.

import scala.compiletime.error
inline def div(n: Int, m: Int): Int =
inline if (m == 0) error("Cannot divide by 0") else n / m

error is not subject to the semantics-preservation prin-
ciple, since it is illegal in code that is retained at run-time.
The same observation applies to most metaprogramming
features described in this section.

5.2 Inline Pattern Matching
This variant of match provides a way to match on the static
type of some expression. It ensures that only one branch is
kept. In the following example, the scrutinee, x, is an inline
parameter that we can pattern match on at compile time.

transparent inline def half(inline x: Any): Any =
inline x match {
case x: Int => x / 2
case x: Double => x / 2.0d

}

half(1.0d) // expands to: 1.0d / 2.0d
half(2) // expands to: 2 / 2
val n: Any = 3
half(n) // error: n is not statically known to be an Int or a Double

The inline matchwill use the static type of the scrutinee
and keep the branch that matches said type. For this to work,
the patterns must be non-overlapping. Unlike the inline
if, this reduction is not necessarily equivalent to its runtime
counterpart when we have more type information.

5.3 Inline Summoning
If we need to summon implicit evidence provided by the
call-site within a method we generally need to pass it as an
argument of that method. But we may want to conditionally
generate different code based on the existence of such im-
plicit. This is not possible if it is part of the arguments as it
would require it before expanding the code.

For this purpose, we introduce a set of delayed summoning
(such as summonInline and summonFrom) that can be used
within the body of an inline but will only be resolved at
call-site.

import scala.compiletime.summonFrom
inline def setFor[T]: Set[T] =
summonFrom {
case ord: Ordering[T] => new TreeSet[T](ord)
case _ => new HashSet[T]

}

In a sense, summonFrom is a transparent inline as the
expanded expression will have the type of the body of the
chosen branch.

5.4 Inlining and Macros
Here is how we define a macro that generates code to com-
pute the power of a number.

inline def power(x: Double, inline n: Int): Double =
${ powerCode('{x}, '{n}) }

The program is split into the macro definition power and
code generators/analyzers powerCode and powerUnrolled.

def powerCode(x: Expr[Double], n: Expr[Long])(...): Expr[Int] =
n.unlift match {
case Some(m) => powerUnrolled(x, m) // statically known n
case None => '{ Math.pow(${x}, ${n}) }

}

def powerUnrolled(x: Expr[Double], n: Long)(...): Expr[Double] =
if (n == 0) '{1.0}
else if (n % 2 == 1) '{ ${x} * ${powerUnrolled(x, n - 1)} }
else '{ val y = ${x} * ${x}; ${powerUnrolled('{y}, n / 2)} }

The macro metalanguage provides two core constructs for
code manipulation.

• '{...} quotes representing code fragments of type
Expr[T] where T is the type of the code within

Semantics-Preserving Inlining for Metaprogramming SCALA ’20, November 13, 2020, Virtual, USA

• ${...} splices that insert code fragments into larger
code fragments

The code directly in quotes delays the execution of the
code, while the code within the splices computes a code frag-
ment now. For example, '{Math.pow(${x}, ${n})} repre-
sents a snippet where we will insert the code of x and n. The
un-lifting operation Expr.unlift allows us to extract the
value of n if it is known at the call-site.

If we use a splice outside of a quote, as in power, we call
it a macro. Such a splice will evaluate its contents at compile
time. To make this evaluation efficient we require the code
within the top-level splice to be a simple static call to a
precompiled function. This way we only interpret a single
reflective function call which then executes any user-defined
compiled code. In theory it would be possible to let the users
call this directly using the metalanguage.

${ powerCode('{x}, '{2}) } // would expand to: x * x

But if the users had to use the metalanguage directly, the
usability of such a feature would have a high complexity
cost. Instead, by using inline we can hide the metalanguage
behind a normal method call that does not mention the meta-
language. We also avoid expanding the macros before the
code is inlined.

inline def power(x: Double, inline n: Int): Double =
${ powerCode('{x}, '{n}) }

In this model, the macro expansion logic simply needs to
evaluate and replace a piece of code. Now the users of this
macro only need to know how to call a method.

power(x, 2) // expanded by inline to: ${ powerCode('{x}, '{2}) }
// then by macro to: x * x

For macro overrides, we additionally expand the macro
inside of the inline function3 as it must exist at runtime. In
this case, the macro should also be able to generate a generic
fallback version of the code that does not have the call-site
information.
Given that the implementation of the macro is done di-

rectly in the language rather than the metalanguage, the
macro can execute arbitrary code at compile-time. This pro-
vides extra flexibility and expressivity that is not available
when using the metalanguage constructs directly.

6 Implementation
Next, we describe the implementation of inlining, as de-
scribed in this work, as merged in the Scala 3 compiler.
Inlining is performed while typing and inlines fully elab-

orated typed ASTs. The reason for this design choice is to
support the implementation of transparent inlining. One of

3And expand at all the call-sites.

the very first steps we need to make is to obtain the typed
ASTs. This can be done either via the definitions that we
are currently typing or from a published TASTy (serialized
AST in a binary format) [9] artifact. TASTy contains the fully
elaborated typed ASTs of a complete class. From this arti-
fact, it is relatively simple to extract the original AST of the
method. Quoted code fragments are also encoded4 in TASTy.
Once we have the AST, the next step is to performing

𝛽-reduction. Most of the complexity comes from making
sure that during inlining we make all types as precise as
possible without changing the resolution of overloads. When
we perform the inlining, we make sure that all references in
the code will be accessible at any inline site by generating
public accessors if needed.

It is worth noting that overload resolution did not change.
Extra checks where added to make sure that the override
constraints hold. These constraints are summarized at the
end of section 3. Furthermore, all inline method definitions
are erased from the code except if marked as retained. The
RHS of retained methods is evaluated as if inlined to execute
any metaprogramming features.

7 Applicability
Using inlining as a compiler directive is already widely used
and we advocate that the extra restrictions on method over-
riding are portable to any OO programming language.

The use of inlining as a base for metaprogramming could
be used in other compiled languages in general. The quotes
and splices were inspired by MetaOCaml for runtime code
generation. They were transformed into compile-time code
generation by simply allowing top-level splices inline meth-
ods. Other metaprogramming features like the error and
pattern matching would also be useful in many languages.

8 Related Work
F# supports inlining of generic functions [14]. However, since
generic numeric code–code that uses primitive operators–is
treated differently for each numeric type, the mechanism of
inlining demands specialized support for type inference. As
a result, inline generic functions can have statically resolved
type parameters whereas non-inline functions cannot. Scala,
in combination with our work, does not infer a different type
for the following method:

inline def f[T: Numeric](x: T, y: T): T = x + x * y

The compiler resolves overloaded methods uniformly and
orthogonally to the inlining mechanism (note that Numeric
is a view bound). F# infers statically resolved type parameters
in the inferred type of the corresponding definition of f in F#.
F# does not support the equivalent of inline if, inline match,
inline overriding or the equivalent to transparent.

4Details of the encoding can be found in [13]

SCALA ’20, November 13, 2020, Virtual, USA Nicolas Stucki, Aggelos Biboudis, Sébastien Doeraene, and Martin Odersky

In C++, inlining is a compiler hint that an optimizer may
or may not follow. However, inlining is not binding compiler
implementors to use inline substitution for any function
that is not marked inline and vice versa. Similarly to our
system, C++17 supports both function and variable inlining.
It is worth noting that since C++ supports external linkage,
linking behavior needs to be changed to support inlining.

constexpr was one of the additions in C++11 and proves
crucial in simplifying template metaprogramming. A con-
stant expression defines that an expression can be evaluated
at compile-time and is implied to be inline. A constant func-
tion can return a constant value and may or may not be
evaluated at compile time. In C++x20, consteval denotes
immediate functions (not semantically equivalent to normal
functions), which are guaranteed to be inlined and evaluated
at compile-time. C++ supports if constexpr statements,
similar to our inline if. In Scala, constant expressions are
specified by a very limited set of rules, hence evaluation
occurs only inside inline ifs and pattern matches. Right-hand
sides of inline values and arguments for inline parameters
must be constant expressions in the sense defined by the
SLS § 6.24, including platform-specific extensions such as
constant folding of pure numeric computations. constexpr
comes with a very complex set of rules that defines what
a constexpr function is; essentially a completely specified
sub-language. In our work, we decide to abstain from strong
compile-time evaluation guarantees to support semantics-
preserving inlining. Since all the aforementioned variants
of const expressions in C++ offer a very powerful set of
compile-time evaluation in C++ also implies inlining, we can
compare that aspect too. Firstly, constant expressions are
strictly term-level features (as opposed to template metapro-
grams). In our work, as shown by transparent inlining we
can refine the type of an expression after the call is inlined.
D [1] supports the usual compiler directive called inline.

Like C++ it is an advice to the compiler. Similarly to C++, D
is also equipped with a powerful template metaprogramming
capability. While C++ uses a functional style for templates,
in D a template looks like imperative code, so syntactically D
is very close to what a user would write at the term level. Our
inline if, similarly to D supports conditional compilation
based on arguments.
D’s Compile Time Function Execution (CTFE) is also part

of the compile-time metaprogramming but on the inter-
pretation side instead of merely inlining. D functions that
are portable and free from side-effects can be executed at
compile-time. While inlining is a declaration-level directive
in our work, in D it is triggered by various “static” contexts
such as a static-if or a dimension argument in a static
array. One of the limitations in D is that the function source
code must be available while in our work it can also be
loaded from compiled code. In the compiler, CTFE comes
after the AST manipulation phase (naming, type assignment,

etc) has been completed and performs essentially interpreta-
tion much like C++. However, as in C++, D cannot introduce
new types (or more precise) in the context.

MetaOCaml and MetaML [7, 15–17] offer a distinction be-
tween the metalanguage and an object language via staging
annotations–brackets, escape and run. The aforementioned
syntactic mondalities are introduced to denote where the
evaluation needs to be deferred and we already cross the
boundary of semantics-preserving code. At this point, we
can navigate and guide freely the process of generating code
from a quoted domain-specific language as shown in past
work [6, 10, 13]. The macro system that comes in Scala 3,
described in 5.4 essentially gains inspiration from these tech-
nologies and completes what we present in this work. Racket
is considered to have one of the most advanced macro sys-
tems and racket macros can be viewed as compiler extensions
that can expand syntax into existing forms. The work we
present in this paper differs greatly from this direction.
Swift supports cross-module inlining and specialization

with two attributes: inlinable and usableFromInline. The
first can be applied to functions and methods, among others,
exposing that declaration’s implementation as part of the
module’s public interface. The second introduces a notion
of an Application binary interface (ABI)-public declaration.
Swift’s attributes offer an inlining mechanism similar to C++.
The most important distinction between Swift and our work
is that inlinable declarations can only reference ABI-public
declarations while we also support access to private methods
via bridges. Our work provides automated detection and gen-
eration of said bridges at the cost of the potential of leaking
private implementation details out of the public ABI.

9 Conclusion and Future Work
In this work we introduce an inline language primitive to
support metaprogramming features. We showed the impor-
tance of preserving the semantics while inlining, including
the implications of having methods and virtual dispatch. We
listed a few metaprogramming features that use inlining and
showed how the metalanguage takes advantage of inlining
to remain simple.
Currently, we provide several out-of-the-box metapro-

gramming solutions to be used just by inlining while others
require full-blown macros. For example, inline if, inline
match, summonInline and error are all supported in some
form by macros but we provide simpler primitives for those
operations. As future work, we should identify a core set
of metaprogramming features that are often required and
provide implementations for them in the standard library.

Changing the implementation of transparent inline meth-
ods may break source compatibility, while a normal inline
method may break binary compatibility. We need to explore
how those can be mitigated and if it is possible to automati-
cally detect all these cases. Swift’s approach to the ABI might

Semantics-Preserving Inlining for Metaprogramming SCALA ’20, November 13, 2020, Virtual, USA

be considered for this purpose, even though it has an extra
syntactic overhead.

It would be good to formally prove the soundness of this
inlining system. It would be interesting to prove the un-
soundness of the system if the overriding restrictions are
removed.

Acknowledgments
We thank the anonymous reviewers of the program commit-
tee for their constructive comments. We gratefully acknowl-
edge funding by the Swiss National Science Foundation un-
der grants 200021_166154 (Effects as Implicit Capabilities)
and 407540_167213 (Programming Language Abstractions
for Big Data).

References
[1] Andrei Alexandrescu. 2010. The D Programming Language: The D

Programming Lan_p1. Addison-Wesley Professional.
[2] Eugene Burmako. 2017. Unification of Compile-Time and Runtime

Metaprogramming in Scala. Ph.D. Dissertation. Lausanne.
[3] Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged

Computation. J. ACM 48, 3 (May 2001), 555–604.
[4] Timothy P Hart. 1963. MACRO definitions for LISP. (1963).
[5] Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-

Caml. In Functional and Logic Programming, Michael Codish and Eijiro
Sumii (Eds.). Springer International Publishing, Cham, 86–102.

[6] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream Fusion, to Completeness. In Proc. of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (Paris,
France) (POPL ’17). ACM, 285–299.

[7] Oleg Kiselyov and Chung-chieh Shan. 2010. The MetaOCaml files -
Status report and research proposal. In ACM SIGPLAN Workshop on
ML.

[8] Yannis Lilis and Anthony Savidis. 2019. A Survey of Metaprogramming
Languages. ACM Comput. Surv. 52, 6, Article 113 (Oct. 2019), 39 pages.
https://doi.org/10.1145/3354584

[9] Martin Odersky, Eugene Burmako, and Dmytro Petrashko. 2016. A
TASTY Alternative. (2016).

[10] Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging:
A Pragmatic Approach to Runtime Code Generation and Compiled
DSLs. In Proc. of the Ninth International Conference on Generative Pro-
gramming and Component Engineering (Eindhoven, The Netherlands)
(GPCE ’10). ACM, New York, NY, USA, 127–136.

[11] Yannis Smaragdakis, Aggelos Biboudis, and George Fourtounis. 2017.
Structured Program Generation Techniques. In Grand Timely Topics
in Software Engineering, Jácome Cunha, João P. Fernandes, Ralf Läm-
mel, João Saraiva, and Vadim Zaytsev (Eds.). Springer International
Publishing, Cham, 154–178.

[12] Bjarne Stroustrup. 2000. The C++ programming language. Pearson
Education India.

[13] Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A Practi-
cal Unification of Multi-stage Programming andMacros. In Proceedings
of the 17th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences (Boston, MA, USA) (GPCE 2018).
ACM, New York, NY, USA, 14–27.

[14] Don Syme. 2012. The F# 3.0 Language Specification.
https://web.archive.org/web/20170325225238/http://fsharp.org/
specs/language-spec/3.0/FSharpSpec-3.0-final.pdf.

[15] Walid Taha. 2004. A Gentle Introduction to Multi-stage Programming.
InDomain-Specific ProgramGeneration: International Seminar, Dagstuhl
Castle, Germany, March 23-28, 2003. Revised Papers, Christian Lengauer,

Don Batory, Charles Consel, and Martin Odersky (Eds.). Number 3016.
Springer Berlin Heidelberg, 30–50.

[16] Walid Taha and Michael Florentin Nielsen. 2003. Environment Clas-
sifiers. In In Proc. of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (New Orleans, Louisiana, USA)
(POPL ’03). ACM, New York, NY, USA, 26–37.

[17] Walid Taha and Tim Sheard. 1997. Multi-stage Programming with
Explicit Annotations. In In Proc. of the 1997 ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics-based Program Manipulation
(Amsterdam, The Netherlands) (PEPM ’97). ACM, New York, NY, USA,
203–217.

[18] The Dotty Team. 2018. Dotty Compiler: A Next Generation Compiler
for Scala. https://web.archive.org/web/20180630221002/http://dotty.
epfl.ch/.

https://doi.org/10.1145/3354584
https://web.archive.org/web/20170325225238/http://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.0-final.pdf
https://web.archive.org/web/20170325225238/http://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.0-final.pdf
https://web.archive.org/web/20180630221002/http://dotty.epfl.ch/
https://web.archive.org/web/20180630221002/http://dotty.epfl.ch/

	Abstract
	1 Introduction
	2 Inline Functions
	2.1 Inline Values
	2.2 Parameters of Inline Functions
	2.3 Recursion
	2.4 Inline If

	3 Inline Methods
	3.1 Members and Bridges
	3.2 Overloads
	3.3 Abstract Methods and Overrides

	4 Transparent Inlining
	5 Metaprogramming
	5.1 Inline Error
	5.2 Inline Pattern Matching
	5.3 Inline Summoning
	5.4 Inlining and Macros

	6 Implementation
	7 Applicability
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

